Phylogenetic Identification of Uncultivated Microorganisms in Natural Habitats

  • T. M. Schmidt
  • E. F. Delong
  • N. R. Pace


The development of oligodeoxynucleotide probes for rapid microbial identification generally requires laboratory cultivation of the organism to be detected so that gene sequences can be determined. However, microbiologists generally agree that at most 0.1 to 10% of microscopically observed organisms in nature can be grown axenically in the laboratory (see Atlas and Bartha 1981). The inability to culture a majority of microorganisms undoubtedly has precluded the discovery of many novel organisms, including medically important ones. Moreover, even if a pure culture is established, the question often remains as to whether the organism in culture is relevant to the study, or simply is the most readily cultivated.


rRNA Sequence Purple Bacterium Phylogenetic Identification Natural Microbial Population Oligodeoxynucleotide Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762–770PubMedGoogle Scholar
  2. Atlas RM, Bartha R (1981) Microbial ecology. Addison-Wesley, PhilippinesGoogle Scholar
  3. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  4. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363PubMedCrossRefGoogle Scholar
  5. DeLong EF, Schmidt TM, Pace NR (1990) Analysis of single cells and oligotrophic picoplankton populations using 16S rRNA sequences. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Proc 5th Int Symp Microbial ecology. Japan Scientific Societies Press, TokyoGoogle Scholar
  6. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60–63CrossRefGoogle Scholar
  7. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170: 720–726PubMedGoogle Scholar
  8. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955–6959PubMedCrossRefGoogle Scholar
  9. Lane DJ, Stahl DA, Olsen GJ, Heller DJ, Pace NR (1985) Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 163: 75–81PubMedGoogle Scholar
  10. Myers RM, Larin Z, Maniatis T (1985) Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230: 1242–1246PubMedCrossRefGoogle Scholar
  11. Olsen GJ (1988) Phylogenetic analysis using ribosomal RNA. Methods Enzymol 164: 793–812PubMedCrossRefGoogle Scholar
  12. Peattie DA (1979) Direct chemical method for sequencing RNA. Proc Natl Acad Sci USA 76: 1760–1764PubMedCrossRefGoogle Scholar
  13. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9: 1–55Google Scholar
  14. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491PubMedCrossRefGoogle Scholar
  15. Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409–411PubMedCrossRefGoogle Scholar
  16. Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 45: 1379–1384Google Scholar
  17. Ward DM, Weller R, Bateson RR (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (London) 345: 63–65CrossRefGoogle Scholar
  18. Weller R, Ward DM (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Mirobiol 55: 1818–1822Google Scholar
  19. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • T. M. Schmidt
    • 1
  • E. F. Delong
    • 2
  • N. R. Pace
    • 1
  1. 1.Department of Biology and Institute for Molecular and Cellular BiologyIndiana UniversityBloomingtonUSA
  2. 2.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations