Skip to main content

Automated Detection of Bacterial Growth for Antibiotic Susceptibility Testing

  • Chapter
  • 204 Accesses

Abstract

Many pathogens show highly variable in vitro antibiotic susceptibility test patterns. Availability of susceptibility results on organisms isolated from the patient is most important in assisting the clinician in selection of therapeutic agents. Unfortunately, most susceptibility testing procedures require considerable time for completion. Therefore, the choice of antimicrobial drug depends on disease symptoms, and the anticipated susceptibility pattern of organisms likely to cause such symptoms. Additionally, local susceptibility patterns are monitored to avoid prescribing drugs to which the population is resistant and to detect emergence of new resistant patterns or newly resistant strains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry AL (1989) Standardization of antimicrobial susceptibility testing. In: Schoenknecht FD, Tenover FC (eds) Antimicrobial susceptibility testing. Clinic Lan Med 9: 203–219

    Google Scholar 

  • Bascomb S (1987) Enzyme tests in bacterial identification. Methods Microbio 119:105–160

    Google Scholar 

  • Berkman RM, Wyatt PJ, Phillips DT (1970) Rapid detection of penicillin sensitivity in Staphylococcus aureus. Nature (London) 228: 458–460

    Article  CAS  Google Scholar 

  • Colvin HJ, Sherris JC (1977) Electrical impedance measurements in the reading and monitoring of broth dilution susceptibility tests. Antimicrob Agents Chemother 12: 61–66

    PubMed  CAS  Google Scholar 

  • Eriquez LA, Hodinka NE(1983) Development of a test system for rapid differentiation of Neisseria and Haemophilusspp. J Clin Microbiol 18:1032–1039

    PubMed  CAS  Google Scholar 

  • Gill VJ, Witebsky FG, MacLowry JD (1989) Multicategory interpretive reporting of susceptibility testing with selected antimicrobial concentrations; ten years of laboratory and clinical experience. In: Schoenknecht FD, Tenover FC (eds) Antimicrobial susceptibility testing. Clinic Lab Med 9: 221–238

    Google Scholar 

  • Hojer H, Nilsson L, Ansehn S, Thore A (1976) In-vitro effect of doxycyline on levels of adenosine triphosphate in bacterial cultures: possible clinical applications. Scan J Infect Dis (Suppl) 9: 58–61

    CAS  Google Scholar 

  • Kanazawa Y, Kuramata T (1966) Resazurin disc method for rapid determination of drug sensitivities of microorganisms. J Antibiot (Tokyo) 19: 229–233

    CAS  Google Scholar 

  • Kiehlbauch J, Kendle JM, Carlson LG, Schoenknecht FD, Plorde JJ (1989) Automated antibiotic susceptibility testing: comparative evaluation of four commercial systems and present state. In: Schoenknecht FD, Tenover FC (eds) Antimicrobial susceptibility testing. Clinical Lab Med 9: 319–340

    Google Scholar 

  • Kroemer G, Bruckler J, Blobel H (1977) Use of microtiter-system for the determination of the antibiotic susceptibility of staphylococci with tetrazolium salts. Zentralbl Bakteriol Hyg I Abt Orig A 239: 42–45

    CAS  Google Scholar 

  • Laszlo A, Gill P, Handzel V, Hodgkin MM, Helbecque DM (1983) Conventional and radiometric drug susceptibility testing of Mycobacterium tuberculosis complex. J Clin Microbiol 18: 1335–1339

    PubMed  CAS  Google Scholar 

  • Matteo MR et al. (1980) Abstr Annu Meet Am Soc Microbiol c201, p308

    Google Scholar 

  • May PS, Winter JW, Fried GH, Antopol W (1960) Effect of tetrazolium salts on selected bacterial species. Proc Soc Exp Biol Med 105; 364–366

    PubMed  CAS  Google Scholar 

  • Shahidi A, Choey I (1980) Effect of contamination levels on antimicrobial susceptibilities tested by Autobac I. Antimicrob Agents Chemother 17: 389–392

    PubMed  CAS  Google Scholar 

  • Staneck JL, Glenn S, DiPersio JR, Leist PA (1989) Wide variability in Pseudomonas aeruginosa aminoglycoside results among seven susceptibility testing procedures. J Clin Microbiol 27: 2277–2285

    PubMed  CAS  Google Scholar 

  • Tenover FC (1989) DNA Probes for antimicrobial susceptibility testing. In: Schoenknecht FD, Tenover FC (eds) Antimicrobial susceptibility testing. Clinic Lab Med 9: 341–347

    Google Scholar 

  • Tomioka H, Yamada Y, Saito H, Jidoi J (1989) Susceptibilities of Mycobacterium leprae and M.avium complex to the H2O2-Fe-mediated halogenation system supplemented with antimicrobial agents. Int J Leprosy 57: 628–632

    CAS  Google Scholar 

  • Urban T, Jarstrand C (1979) Nitroblue tetrazolium ( NBT) reduction by bacteria. Acta Path Microbiol Scand Sect B 87: 227–233

    CAS  Google Scholar 

  • Wheat PF, Spencer RC, Hastings JGM (1989) A novel Luminometer for rapid antimicrobial susceptibility tests on gram-positive cocci by ATP bioluminescence. J Med Microbiol 29; 277–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bascomb, S. (1991). Automated Detection of Bacterial Growth for Antibiotic Susceptibility Testing. In: Vaheri, A., Tilton, R.C., Balows, A. (eds) Rapid Methods and Automation in Microbiology and Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76603-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76603-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76605-3

  • Online ISBN: 978-3-642-76603-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics