On the Role of Aldehyde Dehydrogenase in a Cyclophosphamide-Resistant Variant of Brown Norway Rat Acute Myelocytic Leukemia

  • C. J. de Groot
  • A. C. M. Martens
  • A. Hagenbeek
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 34)

Abstract

The development of resistance to chemotherapeutic agents is still a major cause of treatment failure in cancer patients. The mechanisms by which drug resistance develops are poorly understood. Cyclophosphamide (CP) is widely used in the treatment of different hematological malignancies and in a variety of solid tumors. Furthermore, CP is incorporated in many conditioning regimens prior to bone marrow transplantation. Its in vitro active metabolite 4-hydroperoxycyclophosphamide is frequently used for purging purposes in case of autologous bone marrow transplantation for acute leukemia [1]. Obviously, given these clinical applications, studies on the mechanism(s) of CP resistance are highly relevant.

Keywords

Toxicity DMSO Leukemia Glutathione Catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeager AM, et al. (1986) Autologous bone marrow transplantation in patients with acute nonlymphocytic leukemia, using ex vivo marrow treatment with 4-hydroperoxycyclophosphamide. N Engl J Med 315: 141–147PubMedCrossRefGoogle Scholar
  2. 2.
    Martens ACM, van Bekkum DW, Hagenbeek A (1990) The BN acute myelocytic leukemia (BNML) (A rat model for studying human acute myelocytic leukemia ( AML)). Leukemia 4: 241–257Google Scholar
  3. 3.
    Martens ACM, de Groot CJ, Hagenbeek A (1991) Development and characterization of a cyclophosphamide resistant variant of the BNML rat medel for acute myelocytic leukemia (AML). Eur J Cancer (recently published =) Eur. J. Cancer 27: 161–166Google Scholar
  4. 4.
    Brock N (1989) Oxazaphosphorines cytostatics: past-present-future. Seventh Cain Memorial Award Lecture. Cancer Res 49: 1–7PubMedGoogle Scholar
  5. 5.
    Hilton J (1984) Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 44: 5156–5160PubMedGoogle Scholar
  6. 6.
    Koelling TM, et al. (1990) Development and characterization of a cyclophosphamideresistant subline of acute myeloid leukemia in the Lewis x Brown Norway hybrid rat. Blood 76: 1209–1213PubMedGoogle Scholar
  7. 7.
    Sladek NE, Landkamer GJ (1985) Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorine-resistant L1210 and cross-linking agent-resistant P388 cell lines. Cancer Res 45: 1549–1555PubMedGoogle Scholar
  8. 8.
    McGown AT, Fox BW (1986) A proposed mechanism of resistance to cyclophosphamide and phosphoramide mustard in aYoshida cell line in vitro. Cancer Chemother Pharmacol 17: 223–226PubMedCrossRefGoogle Scholar
  9. 9.
    Suzukake K, Petro BJ, Vistica DT (1982) Reduction in glutathione content of L-PAM resistant L1210 cells confers drug sensitivity. Biochem Pharmacol 31: 121–124PubMedCrossRefGoogle Scholar
  10. 10.
    Arkesteijn GJA, et al. (1987) Bivariate flow karyotyping of acute myelocytic leukemia in the BNML rat model. Cytometry 8: 618–624PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. J. de Groot
    • 1
  • A. C. M. Martens
    • 1
  • A. Hagenbeek
    • 1
    • 2
  1. 1.Institute of Applied Radiobiology and Immunology TNORijswijkThe Netherlands
  2. 2.Dept. Hemato-OncologyThe Dr. Daniel den Hoed Cancer CenterRotterdamThe Netherlands

Personalised recommendations