Does Defibrillation Obey the Fundamental Law of Electrostimulation?

  • W. Irnich
Conference paper


Since the introduction of external DC defibrillation, it has been common to use the energy as the defibrillation dose. This has historical reasons, as external defibrillators could not measure the voltage applied to the paddles, the current, or the duration of the pulse, as is usually done in electrostimulation. The only measurable quantity was the voltage to which the output capacitor was charged. Using the well-known formula that the stored energy is equal to half the capacitance of the charged capacitor times the voltage squared, the manufacturers were able to specify the energy of a pulse. This expedient in defining the dosage has greatly influenced the thinking of those engaged in defibrillation. Nonetheless, one has to ask whether the current practice is in accordance with the theories of electrostimulation and, if not, whether defibrillation obeys the laws of electrostimulation!


Field Strength Implantable Defibrillator Excitable Tissue Biphasic Pulse Distortion Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auger PM, Bardou A, Coulombe A Et Al. (1989) Computer stimulation of defibrillating electric shocks: critical mass. IEEE Eng Med Biol Soc 11th Ann Int Conf, pp 75–76Google Scholar
  2. 2.
    Borman JB, Tannenbaum J, Merin B et al. (1971) External-internal defibrillation. Thorac Cardiovasc Surg 62: 98–105Google Scholar
  3. 3.
    Braunwald E, Ross F, Sonnenblick EH (1967) Mechanisms of contraction of the normal and failing heart. Little, BostonGoogle Scholar
  4. 4.
    Chen P-S, Shibata N, Dixon EG (1986) Activation during ventricular defib¬rillation in open-chest dogs. J Clin Invest 77: 810–823PubMedCrossRefGoogle Scholar
  5. 5.
    Dillon SM, Wit AL (1989) Action potential prolongation by shock as a possible mechanism for electrical defibrillation. Circulation 80: 11 - 96Google Scholar
  6. 6.
    Frazier DW, Krassowska W, Chen P-S et al. (1988) Extracellular field re-quired for excitation in three-dimensional anisotropic canine myocardium. Circ Res 63: 147–165PubMedGoogle Scholar
  7. 7.
    Hoorweg JL (1892) Condensatorentladung und Auseinandersetzung mit du Bois-Reymond. Pflügers Arch 52: 87–108CrossRefGoogle Scholar
  8. 8.
    Ideker RE, Krassowska W, Wharton JM Et Al. (1989) Experimental results pertinent to the modelling of defibrillation. IEEE Eng Med Biol Soc 11th Ann Int Conf, pp 77–78Google Scholar
  9. 9.
    Irnich W (1976) Elektrotherapie des Herzens - physiologische und biotechnische Aspekte. Schiele and Schön, BerlinGoogle Scholar
  10. 10.
    Irnich W (1985) The electrode myocardial interface. Clin Prog Electro- physiol Pacing 3: 338–348Google Scholar
  11. 11.
    Irnich W (1989) Das Grundgesetz der Elektrostimulation. Biomed Tech (Berlin) 34: 168–176CrossRefGoogle Scholar
  12. 12.
    Klee M, Plonsey R (1976) Stimulation of spheroidal cells - the role of cell shape. IEEE Trans Biomed Eng 4: 347–355CrossRefGoogle Scholar
  13. 13.
    Koning G, Schneider H, Hoelen A J et al. (1975) Amplitude-duration rela¬tion for direct ventricular defibrillation with rectangular current pulses. Med Biol Eng 13: 388–395PubMedCrossRefGoogle Scholar
  14. 14.
    Lapicque L (1909) Definition expérimentale de l’excitabilité. Soc Biol 77: 280–283Google Scholar
  15. 15.
    McDaniel WC, Schuder JC (1985) The cardiac ventricular defibrillation threshold-inherent limitations in its interpretation. AAMI 20th Ann Meeting, Boston, May 6–8Google Scholar
  16. 16.
    Mower M, Mirowski M, Spear JF et al. (1974) Patterns of ventricular activity during catheter defibrillation. Circulation 49: 858–861PubMedGoogle Scholar
  17. 17.
    Nernst W (1908) Zur Theorie des elektrischen Reizes. Pflügers Arch 122: 275–314CrossRefGoogle Scholar
  18. 18.
    Plonsey R, Barr RC (1986) Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents. Med Biol Eng Comput 24: 130–136PubMedCrossRefGoogle Scholar
  19. 19.
    Schuder JC, Gold JH, Stoeckle H et al. (1983) Transthoracic ventricular defibrillation in the 100 kg calf with symmetrical one-cycle bidirectional rectangular wave stimuli. IEEE Trans Biomed Eng 30: 415–422PubMedCrossRefGoogle Scholar
  20. 20.
    Shibata N, Chen P-S, Dixon EG et al. (1988) Influence of shock strength and timing on induction of ventricular arrhythmia in dogs. Am J Physiol 255: H891–H901PubMedGoogle Scholar
  21. 21.
    Sommer JR (1983) Implications of structure and geometry on cardiac electrical activity. Ann Biomed Eng 11: 149–157PubMedCrossRefGoogle Scholar
  22. 22.
    Weiss G (1901) Sur la possibilité de rendre comparable entre eux les appareils servant a 1’excitation électrique. Arch Ital Biol 35: 413–446Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. Irnich

There are no affiliations available

Personalised recommendations