Skip to main content

Strategies for Liquid Chromatographic Resolution of Enantiomers

  • Chapter
Chirality

Abstract

Classic liquid-liquid chromatographic separation relies basically on the distribution of a compound between two immiscible phases by which one is moving (the mobile phase) with respect to the stationary phase. However, in the same way, similar processes occur in the chromatography by classifying the stationary phase as adsorbent which might be a chemically modified surface (e.g. with chiral compounds). The chemical and physico-chemical nature of the phases may vary to a great extent and leads to the various modes of chromatography together with their technical translation. The heart of every chromatographic system is the column which contains the (modified) particles whose surface serves as stationary phase and where the separation of a mixture of compounds (in the following for instance a mixture of stereoisomers or enantiomers) depending on the mobile phase chosen takes place. During the passage of the compounds through the packed column (over the stationary phase) the formation of chromatographic bonds with a concentration profile according to a Gaussian distribution curve takes place, and when the individual sorption isotherms of each component are non-identical, the compounds will become separated. This is the idealistic case, further details on chromatography may be found in more specific textbooks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogsten AG (1948) Nature 162: 963

    Article  Google Scholar 

  2. Dalgliesh C (1952) J Chem Soc 3940

    Google Scholar 

  3. Pirkle W, Pochapsky T (1986) J Chromatogr 369: 175

    Article  CAS  Google Scholar 

  4. Ruach-Puntigam S, Erni F, Lindner W (1990) J Chromatogr, paper submitted

    Google Scholar 

  5. Burkle W, Karfunkel H, Schurig V (1984) J Chromatogr 288: 1

    Article  Google Scholar 

  6. Pirkle W, Pochapsky T (1989) Chem Rev 89: 347–362

    Article  CAS  Google Scholar 

  7. Lindner W (1987) Chromatographia 24: 97–107

    Article  CAS  Google Scholar 

  8. Däppen R, Arm H, Meyer V (1986) H Chromatogr 373: 1

    Article  Google Scholar 

  9. Lindner W, Pettersson C (1985) In: Wainer J (ed) Liquid chromatography in pharmaceutical Developments: An introduction. Springfield, p 62

    Google Scholar 

  10. Schurig V (1983) In: Morrsion J (ed) Asymmetric Synthesis, vol 1, Analytical Methods. Academic, New York

    Google Scholar 

  11. Pirkle W, Finn J (1983) In: Morrison J (ed) Asymmetric Synthesis, vol 1, Analytical Methods. Academic, New York

    Google Scholar 

  12. Allenmark S (1988) In: Chromatographic Enantioseparation: Methods and Applications. Ellis Horwood John Wiley, New York

    Google Scholar 

  13. Krstulovic A (1989) In: Chiral Separation by HPCL. Ellis Horwood John Wiley, New York

    Google Scholar 

  14. Lough W (1989) In: Chiral liquid chromatography. Blackie, Chapman and Hall, New York

    Google Scholar 

  15. Davankov V, Navratil J, Walton H (1988) In: Ligand Exchange Chromatography. CRC Press Inc, Boca Raton Florida USA

    Google Scholar 

  16. Dent C (1948) Biochem J 43: 169

    Article  CAS  Google Scholar 

  17. Dalgliesh C (1952) Biochem J 52: 3

    Article  CAS  Google Scholar 

  18. Contractor S, Wragg J (1965) Nature 208: 71

    Article  CAS  Google Scholar 

  19. Hesse G, Hagel R (1973) Chromatographia 6: 277

    Article  CAS  Google Scholar 

  20. Shibata T, Okamoto Y, Ishii K (1986) J Liq Chromatogr 9: 313

    Article  CAS  Google Scholar 

  21. Mannschreck A, Kolber H, Wernicke R (1985) Kontakte (E Merck Darmstadt FRG) 40. and citations therein

    Google Scholar 

  22. Werner A (1989) Kontakte (E Merck Darmstadt FRG) 50

    Google Scholar 

  23. Okamoto Y, Kawashima M, Hatada K (1984) J Am Chem Soc 106: 5357

    Article  CAS  Google Scholar 

  24. Application Guide for chiral column selection. Daicel Chemical Industries (1989)

    Google Scholar 

  25. Ariens E (1984) Eur J Clin Pharmacol 26: 663

    Article  CAS  Google Scholar 

  26. Stewart K, Doherty R (1973) Proc Natl. Acad Sci USA 70: 2850

    Article  CAS  Google Scholar 

  27. Allenmark S, Bomgren B (1982) J Chromatogr 252: 297

    Article  CAS  Google Scholar 

  28. Hermansson J (1983) J Chromatogr 269: 71

    Article  CAS  Google Scholar 

  29. Schill G, Wainer I, Barkan S (1986) J Chromatogr 265: 73

    Article  Google Scholar 

  30. Schill G, Wainer I, Barkan S (1986) J Liq Chromatogr 9: 641

    Article  CAS  Google Scholar 

  31. Hermansson J, Schill G (1988) In: Brown PA, Hartwick R (eds) High Performance Liquid Chromatography. Wiley, New York

    Google Scholar 

  32. Erlandsson P, Marie J, Hansson L, Isaksson R, Pettersson C, Pettersson G (1990) J Am Chem Soc 112: 4573

    Article  CAS  Google Scholar 

  33. Blaschke G (1974) Chem Ber 107: 237

    Article  CAS  Google Scholar 

  34. Blaschke G, Frankel W, Kinkel J (1987) Kontakte (E Merck Darmstadt FRG) 3

    Google Scholar 

  35. Okamoto Y, Hatada K (1986) L Liq Chromatogr 9: 369 and citations therein

    Google Scholar 

  36. Ward T, Armstrong D (1986) J Liq Chromatogr 9: 407

    Article  CAS  Google Scholar 

  37. Iingenfelter D, Helgeson R, Cram C (1981) J Org Chem 46: 393

    Article  Google Scholar 

  38. Armstrong D, Stalcup A, Hilton M, Duncan J, Faulkner J Jr., Chang S-H (1990) Anal Chem 62: 1610

    Article  CAS  Google Scholar 

  39. Lindner W, Hirschböck I (1984) J Pharmac a Biol Anal 2 (2): 183

    Article  CAS  Google Scholar 

  40. Dobashi A, Hara S (1987) J Org Chem 52: 2490

    Article  CAS  Google Scholar 

  41. Prelog V, Mutak S, Kovacevic K (1983) Helv Chim Acta 66: 2279

    Article  CAS  Google Scholar 

  42. Lindner W, Hirschböck I (1986) J Liq Chromatogr 9: 551

    Article  CAS  Google Scholar 

  43. Lindner W (1983) In: Lawrence JF, Frei RW (eds) Chemical Derivatization in Analytical Chemistry, vol 2. Plenum Press, New York

    Google Scholar 

  44. Pettersson C, Schill G (1988) In: Zief M, Crane L (eds) Chromatographic Chiral Separations. Chromatographic Science Series vol 40. Marcel Deccer Inc, New York, p 283–313

    Google Scholar 

  45. Rauch-Puntigam S, Reiter F, Lindner W (1990) J Chromatogr, paper submitted

    Google Scholar 

  46. Lindner W (1988) In: Zief M, Crane L (eds) Chromatographic Chiral Separations. Chromatographic Science Series. Marcel Dekker, New York, p 91–130

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindner, W. (1991). Strategies for Liquid Chromatographic Resolution of Enantiomers. In: Janoschek, R. (eds) Chirality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76569-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76569-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76571-1

  • Online ISBN: 978-3-642-76569-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics