Advertisement

Chirality pp 141-165 | Cite as

Preparation of Homochiral Organic Compounds

Chapter
  • 169 Downloads

Abstract

Due to the extent to which the overlap of organic chemistry and particularly organic synthesis with biology, biochemistry, and medecine is increasing, the necessity of preparing homochiral compounds of a given and predictable absolute configuration is becoming more and more important. Not only because the biological activity of chemical compounds is linked to their absolute configuration in a well-defined way, thus rendering the preparation of homochiral products a conditio sine qua non for medicinal chemistry and for plant protection chemistry, but also since the investigation of compound-enzyme interaction, of receptor chemistry and of all types of chiral recognition above all need the availability of pure enantiomers as do all the current efforts to probe reaction mechanisms — particularly of biogenetic key steps — and the attempts to determine a scientific relationship between optical rotation and absolute configuration. The challenge to develop reliable methods for the preparation of homochiral compounds has been met by synthetic organic chemistry and particularly in the last twenty years we have seen remarkable progress in the efficiency of enantioselective transformations and an unusual increase in the efforts to prepare homochiral compounds.

Keywords

Absolute Configuration Enantiomeric Excess Pure Enantiomer Enantioselective Synthesis Camphor Sulfonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaques J (1981) Enantiomers racemates resolutions. J. Wiley New YorkGoogle Scholar
  2. 2.
    Boyer SK Pfund RA Portmann RE Sedelmeier GH Wetter HF (1988) Heiv Chim Acta 71: 337CrossRefGoogle Scholar
  3. 3.
    Reider PJ Davies P Hughes DL Grabowski EJJ (1987) J Org Chem 52: 955CrossRefGoogle Scholar
  4. 4.
    Morrison JD (1983) Asymmetric synthesis. Academic New York vol 1 p 59Google Scholar
  5. 5.
    Buss AD Warren S (1981) J Chem Soc Chem Commun 100 Google Scholar
  6. 6.
    Beckmann M Hildebrandt H Winterfeldt E (1990) Tetrahedron Asymmetry 1: 335CrossRefGoogle Scholar
  7. 7.
    Machinaga N Kibayashi Ch (1990) Tetrahedron Lett 31: 3637CrossRefGoogle Scholar
  8. 8.
    Heitz MP Overman LE (1989) J Org Chem 54: 2591. Further examples of enantiodivergent syntheses (see in Ref. [3])CrossRefGoogle Scholar
  9. 9.
    Seebach E Naef R Calderari G (1984) Tetrahedron 40: 1313CrossRefGoogle Scholar
  10. 10.
    Seebach M Misslitz U Uhlmann P (1989) Angew Chem 101: 484CrossRefGoogle Scholar
  11. 11.
    Hanessian S (1983) Total Synthesis of Natural Products — the “Chiron” Approach. Pergamon Press OxfordGoogle Scholar
  12. 12.
    Mothes K Schütte HR Luckner M (1985) Biochemistry of Alkaloids. VEB Deutscher Verlag der Wissenschaften BerlinGoogle Scholar
  13. 13.
    Cordell GA (1981) Introduction to Alkaloids — A Biogenetic Approach. J. Wiley New YorkGoogle Scholar
  14. 14.
    Christie BD Rapoport H (1985) J Org Chem 50: 1239 and further work citedGoogle Scholar
  15. 15.
    Renaud R Seebach D (1986) Synthesis 424Google Scholar
  16. 16.
    Sardina FJ Howard MH Koskinen AMP Rapoport H (1989) J Org Chem 54: 4654CrossRefGoogle Scholar
  17. 17.
    Reetz MT Binder J (1989) Tetrahedron Lett 30: 5425CrossRefGoogle Scholar
  18. 18 (a).
    Effenberger F Steegmüller D (1988) Chem Ber 121: 117.CrossRefGoogle Scholar
  19. 18 (b).
    Radunz HE Reißig H-U Schneider G Riethmüller A (1990) Liebigs Ann 705Google Scholar
  20. 19 (a).
    Mikami K Kaneko M Loh TP Terada M Nakai T (1990) Tetrahedron Lett 31: 3909.CrossRefGoogle Scholar
  21. 19 (b).
    Reetz MT Drewes MW Lennick K Schmitz A Holdgrün X (1990) Tetrahedron Asymmetry 1: 375CrossRefGoogle Scholar
  22. 20 (a).
    Corey EJ Ohtani M (1989) Tetrahedron Lett 30: 5227.CrossRefGoogle Scholar
  23. 20 (b).
    Saari WS Fisher Th E (1990) Synthesis 453.Google Scholar
  24. 20 (c).
    Chung JYL Wasicak JT (1990) Tetrahedron Lett 31: 3957Google Scholar
  25. 21.
    ApSimon JW Seguin RP (1979) Tetrahedron (Report) 35: 2797CrossRefGoogle Scholar
  26. 22.
    ApSimon JW Collier TL (1986) Tetrahedron (Report) 42: 5157CrossRefGoogle Scholar
  27. 23.
    Mori K (1989) Tetrahedron (Report) 45: 3233CrossRefGoogle Scholar
  28. 24.
    Davies FA Sheppard AC (1989) Tetrahedron (Report) 45: 5703CrossRefGoogle Scholar
  29. 25.
    Hakam Kh Thielmann M Thielmann Th Winterfeldt E (1987) Tetrahedron 43: 2035CrossRefGoogle Scholar
  30. 26.
    Sato M Hisamichi H Kitazawa N Kaneko Ch Furuya T Suzaki N Inukai N (1990) Tetrahedron Lett 31: 3605CrossRefGoogle Scholar
  31. 27.
    Winterfeldt E (1988) Bull Soc Chim Belg 97: 705CrossRefGoogle Scholar
  32. 28.
    Nagao Y Dai WM Ochiai M Tsukagoshi S Fjita E (1990) J Org Chem 55: 1148CrossRefGoogle Scholar
  33. 29 (a).
    Oppolzer W Kingma AJ (1989) Heiv Chim Acta 72: 1337.CrossRefGoogle Scholar
  34. 29 (b).
    Heimchen G Wegner G (1985) Tetrahedron Lett 26: 6047CrossRefGoogle Scholar
  35. 30.
    Solladié-Cavallo A Simon MC (1989) Tetrahedron Lett 30: 6011CrossRefGoogle Scholar
  36. 31 (a).
    Enders D Lohray BB (1987) Angew Chem 99: 359.CrossRefGoogle Scholar
  37. 31 (b).
    Enders D Bhushan V (1988) Tetrahedron Lett 29: 2437CrossRefGoogle Scholar
  38. 32.
    Weder T Edwards JP Denmark SE (1989) Synlett 1: 20Google Scholar
  39. 33 (a).
    Loewe MF Meyers AI (1985) Tetrahedron Lett 26: 3291.CrossRefGoogle Scholar
  40. 33 (b).
    Loewe MF Hoes M Meyers AI (1985) Tetrahedron Lett 26: 3295CrossRefGoogle Scholar
  41. 34 (a).
    Poll T Abdel Hady AF Karge R Linz G Weetman J Heimchen G (1989) Tetrahedron Lett 30: 5595.CrossRefGoogle Scholar
  42. 34 (b).
    Linz G Weetman J Abdeal Hady AF Heimchen G (1989) Tetrahedron Lett 30: 5599CrossRefGoogle Scholar
  43. 35.
    Whitesell JK Lawrence RM Chen HH (1986) J Org Chem 51: 4779CrossRefGoogle Scholar
  44. 36 (a).
    Schultz AG Sundaraman P (1984) Tetrahedron Lett 25: 4591.CrossRefGoogle Scholar
  45. 36 (b).
    Schultz AG Puig S (1985) J Org Chem 50: 915CrossRefGoogle Scholar
  46. 37 (a).
    Meyers AI Lefker BA Sowin TJ Westrum LJ (1989) J Org Chem 54: 4243.CrossRefGoogle Scholar
  47. 37 (b).
    Meyers AI Romine JL Fleming SA (1988) J Am Chem Soc 110: 7245.CrossRefGoogle Scholar
  48. 37 (c).
    Meyers AI Busaca CA (1989) Tetrahedron Lett 30: 6973.CrossRefGoogle Scholar
  49. 37 (d).
    Meyers AI Busaca CA (1989) Tetrahedron Lett 30: 6977CrossRefGoogle Scholar
  50. 38 (a).
    Solo AJ Singh B Kapoor JN (1969) Tetrahedron 25: 4579.CrossRefGoogle Scholar
  51. 38 (b).
    Solo AJ Eng S Singh B (1972) J Org Chem 37: 3542CrossRefGoogle Scholar
  52. 39.
    Matcheva K Beckmann M Schomburg D Winterfeldt E (1989) Synthesis 814Google Scholar
  53. 40.
    Beckmann M Winterfeldt E reported at the 2nd Irsee Conference March 1990 see also references in Ref [6]Google Scholar
  54. 41.
    Unpublished results from the authors laboratoryGoogle Scholar
  55. 42.
    Kellogg RM (1984) Topics Curr Chem 101: 3Google Scholar
  56. 43.
    Davies SG Skerlj RT Whittaker M (1990) Tetrahedron Lett 31: 3213CrossRefGoogle Scholar
  57. 44.
    Schinzer D (1989) Nachr aus Chem u Techn 37: 1294CrossRefGoogle Scholar
  58. 45.
    Rama Rao AV Bose DS Gurjar MK Ravindranathan T (1989) Tetrahedron 45: 7031CrossRefGoogle Scholar
  59. 46.
    Jung ME Jung YH (1989) Tetrahedron Lett 30: 6637CrossRefGoogle Scholar
  60. 47 (a).
    Brown HC Singaram B (1988) Accounts of Chem Res 21: 287.CrossRefGoogle Scholar
  61. 47 (b.
    ) Midland MM (1989) Chem Rev 89: 1553CrossRefGoogle Scholar
  62. 48.
    Noyori R Tomino I Tanimoto Y Nishizawa M (1984) J Am Chem Soc 106: 6709CrossRefGoogle Scholar
  63. 49 (a).
    Yamaguchi Y Mosher HS (1973) J Org Chem 38: 1870.CrossRefGoogle Scholar
  64. 49 (b).
    Brinkmeyer RS Kapoor V (1977) J Am Chem Soc 99: 8339CrossRefGoogle Scholar
  65. 50 (a).
    Joshi NN Srebnik M Brown HC (1989) Tetrahedron Lett 30: 5551.CrossRefGoogle Scholar
  66. 50 (b).
    Tanaka K Ushio H Suzuki H (1989) J Chem Soc Chem Commun 1700.Google Scholar
  67. 50 (c).
    Corey EJ Yuen PW Hannon FJ Wierda DA (1990) J Org Chem 55: 784CrossRefGoogle Scholar
  68. 51 (a).
    Riediker M Duthaler RO (1989) Angew Chem Int Ed 28: 494.CrossRefGoogle Scholar
  69. 51 (b).
    Duthaler RO Herold P Lottenbach W Oertle K Riediker M (1989) Angew Chem Int Ed 28: 495.CrossRefGoogle Scholar
  70. 51 (c).
    Bold G Duthaler RO Riediker M (1989) Angew Chem Int Ed 28: 497CrossRefGoogle Scholar
  71. 52.
    Riediker M Hafner A Piantini U Rihs G Togni A (1989) Angew Chem Int Ed 28: 499CrossRefGoogle Scholar
  72. 53.
    Matteson DS (1988) Accounts of Chem Res 294 Google Scholar
  73. 54.
    Ikeda N Arai I Yamamoto H (1986) J Am Chem Soc 108: 483CrossRefGoogle Scholar
  74. 55.
    Yamamoto Y Nishii S Maruyama K Komatsu T Ito W (1986) J Am Chem Soc 108: 7778CrossRefGoogle Scholar
  75. 56.
    Masamune S Choy W Petersen IS Sita LR (1985) Angew Chem Int Ed 24: 1CrossRefGoogle Scholar
  76. 57.
    Hoffmann RW Dresely S (1989) Chem Ber 122: 903CrossRefGoogle Scholar
  77. 58.
    Genet JP Kopola N Juge S Ruiz-Montes J Antunes OAC Tarder S (1990) Tetrahedron Lett 31: 3133CrossRefGoogle Scholar
  78. 59.
    Blystone SL (1989) Chem Rev 1663 Google Scholar
  79. 60.
    Tomiak K (1990) Synthesis 541 Google Scholar
  80. 61.
    Izawa H Shirai R Kawasaki H Kim H Koga K (1989) Tetrahedron Lett 30: 7221CrossRefGoogle Scholar
  81. 62 (a).
    Duhamel L Duhamel P Lannay JC Plaquevent JC (1984) C Bull Soc Chim Fr II: 421.Google Scholar
  82. 62 (b).
    Duhamel L Plaquevent JC (1978) J Am Chem Soc 100: 7415.CrossRefGoogle Scholar
  83. 62 (c).
    Duhamel L Plaquevent JC (1980) Tetrahedron Lett 21: 2521.CrossRefGoogle Scholar
  84. 62 (d).
    Duhamel L Fouguay S Plaquevent JC (1986) Tetrahedron Lett 27: 4975CrossRefGoogle Scholar
  85. 63.
    Fehr C Galindo J (1988) J Am Chem Soc 110: 6909CrossRefGoogle Scholar
  86. 64.
    Ojima I Clos N Bastos C (1989) Tetrahedron 45: 6901CrossRefGoogle Scholar
  87. 65 (a).
    Eder U Sauer G Wiechert R (1971) Angew Chem 83: 492.CrossRefGoogle Scholar
  88. 65 (b).
    Hajos ZG Parrish DR (1974) J Org Chem 39: 1612CrossRefGoogle Scholar
  89. 66.
    Winterfeldt E (1984) In: Bartmann W Trost BM (eds) Selectivity a Goal for Synthetic Efficiency. Verlag Chemie WeinheimGoogle Scholar
  90. 67.
    Knowles WS Sabacky MJ Vineyard BD Weinkauf DJ (1975) J Am Chem Soc 97: 1975CrossRefGoogle Scholar
  91. 68.
    Brunner H (1983) Angew Chem 95: 921CrossRefGoogle Scholar
  92. 69.
    Noyori R (1989) J Chem Soc Rev 18: 187CrossRefGoogle Scholar
  93. 70.
    Brunner H Becker R Riepl G (1984) Organometallics 3: 1354CrossRefGoogle Scholar
  94. 71 (a).
    Corey EJ Chen CP Reichard GA (1989) Tetrahedron Lett 30: 5547.CrossRefGoogle Scholar
  95. 71 (b).
    Corey EJ Link JO (1989) Tetrahedron Lett 30: 6275CrossRefGoogle Scholar
  96. 72.
    Leutenegger U Madin A Pfaltz A (1989) Angew Chem 101: 61CrossRefGoogle Scholar
  97. 73.
    Narasaka K Iwasawa N Inoue M Yamada T Nakashima M Sugimori J (1989) J Am Chem Soc 111: 5340CrossRefGoogle Scholar
  98. 74.
    Corey EJ Imwinkelried R Pikul S Xiang YB (1989) J Am Chem Soc 111: 5493CrossRefGoogle Scholar
  99. 75 (a).
    Hayashi T (1988) Tetrahedron 44: 5253.CrossRefGoogle Scholar
  100. 75 (b).
    Togni A Pastor SD Rihs G (1989) Hel Chim Acta 72: 1471CrossRefGoogle Scholar
  101. 76.
    Ward RS (1990) J Chem Soc Rev 19: 1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

There are no affiliations available

Personalised recommendations