Advertisement

Chirality pp 18-33 | Cite as

Theories on the Origin of Biomolecular Homochirality

Chapter

Abstract

From the discovery of dissymmetric crystals by Louis Pasteur in 1848, the conclusion was drawn that there exist dissymmetric molecular structures [1]. Their occurrence was explained by allpervasive and universal dissymmetric forces. Michael Faraday’s discovery [2] that inactive materials such as glass show optical activity in a magnetic field, convinced Pasteur that the well-known classical polar fields are basically dissymmetric. However, all his related chemical experiments failed [3]. Pasteur’s term dissymétrie was replaced later by the notion chirality, which was introduced by Kelvin, who adopted it from the familiar analogy of the morphological mirror-image relation between the left and the right hand [4].

Keywords

Optical Activity Chiral Molecule Tunneling Splitting Weak Neutral Current Chiral Dissymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pasteur L (1848) C R Hebd Séant Acad Sci Paris 26: 535Google Scholar
  2. 2.
    Faraday M (1846) Phil Mag 28: 294Google Scholar
  3. 3.
    Pasteur L (1884) Bull Soc Chim France 41: 215Google Scholar
  4. 4.
    Kelvin LD (1904) Baltimore Lectures Clay LondonGoogle Scholar
  5. 5.
    Mason SF (1984) New Scientist 101:10 Google Scholar
  6. 6.
    Mason SF (1984) Nature 311: 19CrossRefGoogle Scholar
  7. 7.
    Mason SF (1985) Nature 314: 400CrossRefGoogle Scholar
  8. 8.
    Janoschek R (1986) Naturwiss Rundsch 39: 327Google Scholar
  9. 9.
    Tranter GE (1986) Nachr Chem Tech Lab 34: 866 CrossRefGoogle Scholar
  10. 10.
    Hegstrom RA Kondepudi DK (1990) Scientific American 98Google Scholar
  11. 11.
    Latal H Chap. 1 in this bookGoogle Scholar
  12. 12.
    Hund F (1927) Z Phys 43: 805CrossRefGoogle Scholar
  13. 13.
    Papousek D Aliev MR (1982) Molecular vibrational rotational spectra, Elsevier AmsterdamGoogle Scholar
  14. 14.
    Schleyer PvR Shavitt I Pepper MJM Janoschek R Quack M unpublishedGoogle Scholar
  15. 15.
    Masters PM Bada JL Zigler JS (1977) Nature 268: 71CrossRefGoogle Scholar
  16. 16.
    Quack M Jans-Bärli S Molekulare Thermodynamik und Kinetik, Verlag der Fachvereine Zürich 1986Google Scholar
  17. 17.
    Quack M (1989) Angew Chem 101: 588; Angew Chem Int Ed Engl 28: 571CrossRefGoogle Scholar
  18. 18.
    Frank FC (1953) Biochim Biophys Acta 11: 459CrossRefGoogle Scholar
  19. 19.
    Tennakone K (1984) Chem Phys Letters 105: 444CrossRefGoogle Scholar
  20. 20.
    Babovié V Gutman I Jokié S (1987) Z Naturforsch 42a: 1024Google Scholar
  21. 21.
    Gutman I Babovié V Jokié S (1988) Chem Phys Letters 144: 187Google Scholar
  22. 22.
    Babovié V Gutman I Jokié S (1987) Collect of Scientific Papers of the Faculty of Science Kragujevac 8: 51Google Scholar
  23. 23.
    Mason SF Tranter GE (1984) Mol Phys 53: 1091CrossRefGoogle Scholar
  24. 24.
    Trauter GE (1985) Mol Phys 56: 825CrossRefGoogle Scholar
  25. 25.
    Kondepudi DK Nelson GW (1985) Nature 314: 438CrossRefGoogle Scholar
  26. 26.
    Kondepudi DK Nelson GW (1984) Physica 125A: 465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

There are no affiliations available

Personalised recommendations