Advertisement

Chirality pp 205-238 | Cite as

The Nucleoproteinic System

  • S. Hoffmann

Abstract

Our roots reach back to the depths of the past. The grand process — at least within our view of space and time — seems to have endeavored over a period of 10–20 billion years to gain a certain consciousness and understanding of itself. Together with the universe, life patterns originated in their early infancy from an alien phase transition between nothingness and existence in the incomprehensible beginning. In all our insufficiencies, we were a part of these patterns at the very beginning, and we will share their final termination.

Keywords

Liquid Crystal Grand Unification Cholesteric Phase Life Pattern Sodium Ammonium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burns JO (1990) Kosmologie und Teilchenphysik. Spektr Wiss Verlagsges, Heidelberg, 10Google Scholar
  2. 2.
    Kelker H (1988) Mol Cryst Liq Cryst 165: 1Google Scholar
  3. Kelker H (1986) Naturwiss Rundschau 39: 239Google Scholar
  4. Kelker H (1986) In: Sackmann H (ed) Zehn Arbeiten über flüssige Kristalle — 6. Flüssigkristallkonferenz sozialistischer Länder. Wiss Beitr Martin-Luther-Univ 1986/52 (N17), 193Google Scholar
  5. Kelker H, (1973) Mol Cryst Liq Cryst 21: 1CrossRefGoogle Scholar
  6. 3.
    Trefil S (1983) Big Bang Physics. Scribner’s New YorkGoogle Scholar
  7. 4.
    Hoffmann S (1989) In: Braun D (ed) Polymers and biological function. Angew Makromol Chem 166/167: 81Google Scholar
  8. Hoffmann S (1989) Wiss Z Univ Halle 38/X4: 3Google Scholar
  9. Hoffmann S (1987) Z Chem 27: 395CrossRefGoogle Scholar
  10. Hoffmann S (1985) In: Blumstein A (ed) Polymeric liquid crystals. Plenum Publ Co, New York, 423CrossRefGoogle Scholar
  11. 5.
    Haken H (1981) Naturwissenschaften 68: 293CrossRefGoogle Scholar
  12. 6.
    Hoffmann S (1978) Molekulare Matrizen (I Evolution, II Proteine, III Nudeinsäuren, I V Membranen). Akademie-Verlag, BerlinGoogle Scholar
  13. 7.
    Hoffmann S Witkowski W (1978) In: Blumstein A (ed) Mesomorphic order in polymers and polymerization in liquid crystalline media. Am Chem Soc Symp-Ser 74: 178Google Scholar
  14. 8.
    Pasteur L (1886) In: Leçons de chimie professées en 1860 par MM. Pasteur, Cahours, Wurtz, Berthelot, Sainte-claire Deville, Barral et Dumas, Hachette, Paris 1861, Sur la dissymétrie moléculaire, Collection Epistème, ParisGoogle Scholar
  15. 9.
    Janoschek R (1986) Naturwiss Rundschau 39: 327Google Scholar
  16. 10.
    Hegstrom RA Kondepudi DK (1990) Scientific American 262: 98CrossRefGoogle Scholar
  17. 11.
    Freedman DZ Nieuwenhuizen P van (1988) In: Teilchen, Felder und Symmetrien. Spektr Wiss Verlagsges, Heidelberg, 170Google Scholar
  18. Freedman DZ Nieuwenhuizen P van (1990) In: Kosmologie und Teilchenphysik. Spektr Wiss Verlagsges, Heidelberg, 120Google Scholar
  19. 12.
    Bouchiat M-A Pottier L (1988) In: Elementare Materie, Vakuum und Felder. Spektr Wiss Verlagsges, Heidelberg, 130Google Scholar
  20. 13.
    Weinberg S (1980) Science 210: 1212CrossRefGoogle Scholar
  21. 14.
    Mason S (1986) Trends Pharmacol Sci 20Google Scholar
  22. Mason S (1985) Chem Brit 21: 538Google Scholar
  23. Mason S (1986) Nouv J Chim 10: 739Google Scholar
  24. 15.
    Tranter GE (1986) Nachr Chem Techn Lab 34: 866CrossRefGoogle Scholar
  25. Tranter GE (1985) Nature 318: 172CrossRefGoogle Scholar
  26. Tranter GE (1985) Mol Phys 56: 825CrossRefGoogle Scholar
  27. Tranter GE (1986) J theor Biol 119: 469CrossRefGoogle Scholar
  28. 16.
    Kondepudi DK Nelson GW (1985) Nature 314: 438CrossRefGoogle Scholar
  29. 17.
    Wainer IW Caldwell J Testa B (ed) (1989) Chirality 1: 1Google Scholar
  30. 18.
    Mainzer K (1988) Chimia 42: 161Google Scholar
  31. 19.
    Schadt W Petrzila M Gerber PR Villiger A (1985) Mol Cryst Liq Cryst 122: 241CrossRefGoogle Scholar
  32. 20.
    Langridge R Ferrin ThE Kuntz ID Conolly ML (1981) Science 211: 661 —courtesy of Laurence H HurleyGoogle Scholar
  33. 21.
    Nir S Garduno R Rein R Coeckelenbergh Y MacElroy RD Egan JT (1977) Int J Quant Chem Quant Biol Symp 4: 135Google Scholar
  34. 22.
    Katchalsky A (1973) Naturwissenschaften 60: 215CrossRefGoogle Scholar
  35. Katchalsky A (1970) Nature 228: 636CrossRefGoogle Scholar
  36. 23.
    Miescher F (1897) Über die chemische Zusammensetzung der Eiterzellen, Hoppe-Seyler’s med Unters 1871; Die histochemischen und physiologischen Arbeiten (FCW Vogel, ed) LeipzigGoogle Scholar
  37. 24.
    Haeckel E (1917) Kristallseelen. Kröner-Verlag, LeipzigGoogle Scholar
  38. 25.
    Fischer E (1894) Ber Dtsch Chem Ges 27: 2985, 3189CrossRefGoogle Scholar
  39. 26.
    Eschenmoser A (1988) Angew Chem 100: 5CrossRefGoogle Scholar
  40. 27.
    Schrödinger E (1944) What is life Cambridge University Press, New YorkGoogle Scholar
  41. 28.
    Chargaff E (1950) Experientia 6: 201CrossRefGoogle Scholar
  42. Chargaff E (1965) On some of the biological consequences of base-pairing in the nucleic acids in development and metabolic control mechanisms and neoplasia. Williams and Wilkins, BaltimoreGoogle Scholar
  43. Chargaff E (1970) Experientia 26: 810CrossRefGoogle Scholar
  44. Chargaff E (1974) Building the tower of Babble. Nature 248: 776CrossRefGoogle Scholar
  45. 29.
    Pauling L Corey RB (1951) Proc Nat Acad Sci USA 37: 205, 735Google Scholar
  46. 30.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca-New YorkGoogle Scholar
  47. 31.
    Rawn JD (1983) Biochemistry. Harper & Row Publ, New YorkGoogle Scholar
  48. 32.
    Watson JD Crick FHC (1953) Nature 177: 964CrossRefGoogle Scholar
  49. 33.
    Watson JD (1968) The double helix. AthenaeumGoogle Scholar
  50. 34.
    Guschlbauer W (1988) In: Encyclopedia of polymer science and engineering. Wiley & Sons, New York 12: 699Google Scholar
  51. 35.
    Dickerson RE Geis I (1971) The structure and action of proteins 1971; Struktur und Funktion der Proteine. Verlag Chemie WeinheimGoogle Scholar
  52. 36.
    Chadrasekaran R Mitra AK (1983) In: Srinavasan R Sarma RH (eds) Conformations in biology. Adenine Press, New York, 91Google Scholar
  53. 37.
    Urry DW Venkatachalan CM Lang MM Prasad KU, ibid, 11Google Scholar
  54. 38.
    Chou KC Pottle M Nemethy G Ueda Y Scheraga HA (1982) J Mol Biol 162: 89CrossRefGoogle Scholar
  55. 39.
    Scheraga HA Chou K-Ch Némethy G (1983) In: Srinavasan R Sarma RH (eds) Conformations in biology. Adenine Press, New York, 1Google Scholar
  56. 40.
    Jaenicke R (1987) Progr Biophys Mol Biol 49: 117CrossRefGoogle Scholar
  57. Jaenicke R (1988) Naturwissenschaften 75: 604CrossRefGoogle Scholar
  58. 41.
    Mutter M Vuilleumier S (1989) Angew Chem 101: 551CrossRefGoogle Scholar
  59. 42.
    Katchalski-Katzir E (1988) Makromol Chem Macromol Symp 19: 1CrossRefGoogle Scholar
  60. 43.
    Hoffmann S Witkowski W (1984) In: Possin H (ed) Wirkstofforschung ‘82. Wiss Beitr Martin-Luther-Univ Halle 1984/4(S40), 57, 102Google Scholar
  61. 44.
    Jurka J Smith TF (1987) J Mol Evol 25: 15CrossRefGoogle Scholar
  62. 45.
    Dickerson RE (1989) J Mol Biol 205: 787CrossRefGoogle Scholar
  63. 46.
    Barton JK (1988) Chem Eng News 30Google Scholar
  64. 47.
    Arnott S Chandrasekaran R Banerjee AK He R Walker JK (1983) J Biomol Struct Dyn 1: 437CrossRefGoogle Scholar
  65. 48.
    Olson WK (1977) Proc Acad Sci USA 74: 1775CrossRefGoogle Scholar
  66. 49.
    Sarma MH Gupta G Dhingra MM Sarma RH (1983) J Biomol Struct Dyn 1: 59CrossRefGoogle Scholar
  67. 50.
    Sobell HM (1985) In: Jurnak McPherson (eds) Biological macromolecules and assemblies. Wiley & Sons, New York 2: 172Google Scholar
  68. 51.
    Clementi E (1983) In: Clementi E Sarma RH (eds) Structure and dynamics: nucleic acids and proteins. Adenine Press, New York, 321Google Scholar
  69. 52.
    Hoffmann S (1985) In: Beranek J Piskala A (eds) Plenary lectures — Symp Chem Heterocycl Compounds (VIIIth) and of Nucleic Acids Components (VIth). Czechoslovak Acad Sci Inst Macromol Chem Press, Prague, 48Google Scholar
  70. Hoffmann S (1984) Nucleic Acids Symp Ser 14: 7Google Scholar
  71. 53.
    Hoffmann S (1983) In: Geissler E Scheler W (eds) Darwin today. Akademie-Verlag, Berlin, 192Google Scholar
  72. Hoffmann S (1987) In: Scheel F (ed) VI. Int Tagung Grenzflächenaktive Stoffe. Akademie-Verlag, Berlin, 545Google Scholar
  73. 54.
    Onsager L (1949) Ann N Y Acad Sci 51: 62ZCrossRefGoogle Scholar
  74. 55.
    Ringsdorf H Schlarb B Venzmer J (1988) Angew Chem 100: 118CrossRefGoogle Scholar
  75. Ringsdorf H Schlarb B Venzmer J (1988) Angew Chem Int Ed 27: 113CrossRefGoogle Scholar
  76. 56.
    Watanabe J Ono H Uetmatsu I Abe A (1985) Macromolecules 18: 2141CrossRefGoogle Scholar
  77. 57.
    Samulski ET Tobolsky AV (1970) In: Johnson JF Porter RS (eds) Liquid crystals and ordered fluids. Plenum Publ. Co, New York, 167Google Scholar
  78. 58.
    Iizuka E (1978) Polymer J 10: 235CrossRefGoogle Scholar
  79. Iizuka E (1988) Adv Biophys 24: 1CrossRefGoogle Scholar
  80. 59.
    Rill RL (1986) Proc Nat Acad Sci USA 83: 342; together with Strzelecka TE Davidson MWGoogle Scholar
  81. Rill RL (1988) Nature 331: 457CrossRefGoogle Scholar
  82. 60.
    Livolant F Bouligand Y (1988) J Phys 47: 1813CrossRefGoogle Scholar
  83. Livolant F Bouligand Y (1989) Mol Cryst Liq Cryst 166: 91Google Scholar
  84. Livolant F (1986) J Phys 45: 1605CrossRefGoogle Scholar
  85. Livolant F Bouligand Y (1984) Eur J Cell Biol 33: 400Google Scholar
  86. 61.
    Eigen M (1971) Naturwissenschaften 58: 465CrossRefGoogle Scholar
  87. Eigen M (1987) Cold Spring Harbor Symp Quant Biol 52: 307CrossRefGoogle Scholar
  88. Eigen M (1986) Chem Scripta 26B: 13Google Scholar
  89. Eigen M (1985) Ber Bunsenges Phys Chem 89: 658CrossRefGoogle Scholar
  90. 62.
    Kuhn H (1983) In: Geissler E Scheler W (eds) Darwin today. Akademie-Verlag, Berlin, 171Google Scholar
  91. 63.
    Schuster P, ibid 166; (1986) Physica 22D: 100Google Scholar
  92. 64.
    Sarin PS Gallo RC (eds) (1980) Inhibitors of DNA and RNA polymerases. Pergamon Press, Oxford-New YorkGoogle Scholar
  93. 65.
    Stryer L (1990) Biochemie. Spektr Wiss Verlagsges, HeidelbergGoogle Scholar
  94. 66.
    Cech ThR (1987) Spektrum Wiss 42Google Scholar
  95. Cech ThR (1988) J Am Med Assoc 260: 3030CrossRefGoogle Scholar
  96. Sullivan FX Cech ThR (1986) J Mol Biol 189: 143CrossRefGoogle Scholar
  97. 67.
    Uhlenbeck OC Haseloff J Gerlach L (1988) Nature 334: 585CrossRefGoogle Scholar
  98. 68.
    Waring RB Towner P Minter SJ Davies RW (1986) Nature 321: 133CrossRefGoogle Scholar
  99. 69.
    Orgel LE (1986) J theor Biol 123: 127CrossRefGoogle Scholar
  100. 70.
    Hoffmann S (1988) In: Seliger H Secrist A (eds) 2nd Swedish-German Workshop Modern Aspects Chem Biochem Nucleic Acids and their Comp. Nucleosides and Nucleotides 7: 555Google Scholar
  101. 71.
    Hoffmann S (1990) Mitteilungsbl Chem Ges DDR 37: 45Google Scholar
  102. 72.
    Neumann E Katchalsky A (1970) Ber Bunsenges Phys Chem 74: 868Google Scholar
  103. Neumann E Katchalsky A (1972) Proc Nat Acad Sci USA 69: 993CrossRefGoogle Scholar
  104. 73.
    Neumann E (1973) Angew Chem 85: 430; (1973) Angew Chem Int Ed 12: 356Google Scholar
  105. 74.
    Hoffmann S Witkowski W Rüttinger HH (1974) In: Sedlâcek B (ed) Heterogeneities in Polymers — 4th Disc Conf Macromolecules. Czechoslovak Acad Sci, Prague, 37Google Scholar
  106. Hoffmann S Witkowski W Rüttinger HH (1976) In: Sackmann H (ed) 1st Liquid Crystal Conf Soc Countries Halle, 36Google Scholar
  107. Hoffmann S Witkowski W Rüttinger HH (1975) Z Chem 15: 149CrossRefGoogle Scholar
  108. Hoffmann S (1979) Z Chem 19: 241CrossRefGoogle Scholar
  109. 75.
    Ovchinnikov YuA Ivanov VT (1975) Tetrahedron 31: 2177CrossRefGoogle Scholar
  110. 76.
    Ovchinnikov YuA (1987) Bioorganicheskaya chimya Prosvyeschenye MoscowGoogle Scholar
  111. 77.
    Etchebest C Lavery R Pullman B (1982) Stud Biophys 90: 7Google Scholar
  112. 78.
    Urry DW (1984) J Protein Chem 3: 403CrossRefGoogle Scholar
  113. 79.
    Carter CW Kraut J (1974) Proc Nat Acad Sci USA 71: 283CrossRefGoogle Scholar
  114. 80.
    Church GM Sussman JL Kim S-H (1977) Proc Nat Acad Sci USA 74: 1458CrossRefGoogle Scholar
  115. 81.
    Hoffmann S (1981) In: Possin H (ed) Wirkstofforschung 1980. Wissensch Publ Martin-Luther-Univ, Halle 1981 2: 35Google Scholar
  116. Hoffmann S (1989) Z Chem 29: 173, 449Google Scholar
  117. 82.
    Anderson WF Ohlendorf DH Takeda Y Matthews BW (1981) Nature 290: 754CrossRefGoogle Scholar
  118. 83.
    Ohlendorf DH Anderson WF Takeda Y Matthews BW (1983) J Biomol Struct Dyn 1: 553CrossRefGoogle Scholar
  119. 84.
    Gibson TJ Postma JPM Brown RS Argos P (1988) Protein Eng 2: 209CrossRefGoogle Scholar
  120. 85.
    Kim S-H (1983) In: Mizoguchi K Watanabe I Watson JD (eds) Nucleic acids research: future developments. Academic Press, New York, 165Google Scholar
  121. 86.
    Reinitzer F (1888) Mh Chem 9: 421Google Scholar
  122. 87.
    Knoll PM (1981) Fridericiana — Zeitschrift der Universität Karlsruhe, 43Google Scholar
  123. 88.
    Lehmann O (1907) Die scheinbar lebenden Kristalle. Schreiber-Verlag, EsslingenGoogle Scholar
  124. Lehmann O (1921) Flüssige Kristalle und ihr scheinbares Leben — dargestellt in einem Kinofilm. Voss-Verlag, LeipzigGoogle Scholar
  125. Lehmann O (1918) Die Lehre von den flüssigen Kristallen und ihre Beziehungen zu den Problemen der Biologie. Bergmann-Verlag, WiesbadenGoogle Scholar
  126. Lehmann O (1918) Ergebnisse der Physiologie 16: 255CrossRefGoogle Scholar
  127. 89.
    Vorländer D (1908) Kristallin-flüssige Substanzen. Enke-Verlag, StuttgartGoogle Scholar
  128. Vorländer D (1924) Chemische Kristallographie der Flüssigkeiten. Akademische Verlagsges, LeipzigGoogle Scholar
  129. 90.
    Hoffmann F, personal communicationsGoogle Scholar
  130. 91.
    Sackmann H (1986) In: Sackmann H (ed) Zehn Arbeiten über flüssige Kristalle. Wiss Beitr Martin-Luther-Univ 1986/52(N17), 193Google Scholar
  131. 92.
    Demus D (1988) Mol Cryst Liq Cryst 165: 45Google Scholar
  132. 93.
    Samulski ET (1985) Faraday Disc Chem Soc 79: 7CrossRefGoogle Scholar
  133. 94.
    Skarp K Handschy MA (1988) Mol Cryst Liq Cryst 165: 439Google Scholar
  134. 95.
    Leuchtag HR (1987) J theor Biol 127: 321, 341CrossRefGoogle Scholar
  135. 96.
    Collette JW Miller MS (eds) (1989) Advanced Materials. Angew Chem Adv Mater 101: 654Google Scholar
  136. 97.
    Kelker H Hatz R (1980) Handbook of liquid crystals. Verlag Chemie WeinheimGoogle Scholar
  137. 98.
    Gray GW (1962) Molecular structure and the properties of liquid crystals. Academic Press, New YorkGoogle Scholar
  138. 99.
    Chandrasekhar S (1977) Liquid crystals Cambridge University Press, New YorkGoogle Scholar
  139. 100.
    Litster JD Birgeneau J Physics Today 1982, 1Google Scholar
  140. 101.
    Schnering HG v. Nesper R (1987) Angew Chem Int Ed 26: 1059CrossRefGoogle Scholar
  141. Schnering HG v. Nesper R (1987) Angew Chem 99: 1097CrossRefGoogle Scholar
  142. 102.
    Blum Z Lidin S (1988) Acta Chem Scand B42: 417CrossRefGoogle Scholar
  143. 103.
    Dörfler H-D Brezesinski G Hoffmann S (1980) Stud Biophys 80: 59Google Scholar
  144. 104.
    Hoffmann S Jaenecke G Brandt W Kumpf W Weißflog W Brezesinski G (1986) Z Chem 26: 284CrossRefGoogle Scholar
  145. 105.
    Thondorf I Lichtenberger O Hoffmann S (1990) Z Chem 30: 171CrossRefGoogle Scholar
  146. 106.
    Meister W-V Ladhoff A-M Kargov SI Burckhardt G Luck G Hoffmann S (1990) Z Chem 30: 213CrossRefGoogle Scholar
  147. 107.
    Bajer A (1983) In: Alberts B Bray D Lewis J Raff M Roberts K Watson JD, Molecular biology of the cell. Garland Publ, New YorkGoogle Scholar
  148. 108.
    McCammon JA Lee CY Northrup SH (1983) J Am Chem Soc 105: 2232CrossRefGoogle Scholar
  149. 109.
    Karplus M McCammon JA (1986) Scientific American 254: 42CrossRefGoogle Scholar
  150. 110.
    McCammon JA Harvey SC (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, New YorkCrossRefGoogle Scholar
  151. 111.
    Hoffmann S (1990) Z Chem 30: 94; (1989) Wiss Z Univ Halle 38/H5: 121Google Scholar
  152. 112.
    Blake CCF (1978) Endeavour 2: 137CrossRefGoogle Scholar
  153. 113.
    Bryan RFP Hartley P Miller W Shen M-S (1980) Mol Cryst Liq Cryst 62: 281CrossRefGoogle Scholar
  154. 114.
    Hess B Markus M (1987) Trends Biochem Sci 12: 45CrossRefGoogle Scholar
  155. 115.
    Petrosian V (1982) Nature 298: 805CrossRefGoogle Scholar
  156. 116.
    Micciancio S Vassallo G (1982) Il Nuovo Cimento 1: 121Google Scholar
  157. 117.
    Palma MU (1983) In: Clementi E Sarma RH (eds) Structure and dynamics of nucleic acids and proteins. Adenine Press, New York, 125Google Scholar
  158. 118.
    Frühbeis H Klein R Wallmeier H (1987) Angew Chem 99: 413CrossRefGoogle Scholar
  159. 119.
    Wolken JJ (1984) In: Matsuno K Dose K Harada K Rohlfing DL (eds) Molecular evolution and protobiology. Plenum Press, New York, 137CrossRefGoogle Scholar
  160. 120.
    Frauenfelder H (1986) In: Clementi E Chin S (eds) Structure and dynamics of nucleic acids, proteins and membranes. Plenum Publ Co, New York, 169CrossRefGoogle Scholar
  161. 121.
    Weizsäcker C-F v. (1986) Nova Acta Leopoldina (Neue Folge) 37/2: 5Google Scholar
  162. 122.
    Cramer F (1979) Interdisciplinary Science Reviews 4: 132CrossRefGoogle Scholar
  163. see also: “Denn nur also beschränkt war je das Vollkommene möglich” — Eine wissenschaftliche Interpretation von Goethes “Metamorphose der Tiere” — Preprint 1989 (kind information by Hartmut Seliger)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • S. Hoffmann

There are no affiliations available

Personalised recommendations