Skip to main content

Fail-stop-Signaturen und ihre Anwendung

  • Conference paper

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 271))

Kurzfassung

Die Unfälschbarkeit konventioneller digitaler Signaturen beruht zwangsläufig auf komplexitätstheoretischen Annahmen, d.h. selbst die sichersten Systeme können durch einen unerwartet mächtigen Angreifer gebrochen werden. Daher führen wir Fail-stop-Signaturen ein: Sie sind so unfälschbar wie die besten konventionellen Signaturen, aber wenn doch eine Signatur gefälscht wird, kann der angebliche Unterzeichner unbedingt (d.h. ohne jegliche Annahmen) die Fälschung beweisen, mit beliebig hoher Wahrscheinlichkeit.

Wir konstruieren konkrete Fail-stop-Signatursysteme, die sogenannten Versteckssysteme, aus beliebigen kollisionsfreien Paaren von Permutationen. Als Spezialfall ergibt sich ein relativ praktikables System, in dem Fälschen so schwer ist wie Faktorisierung.

Ausführlich werden Anwendungen in digitalen Zahlungssystemen betrachtet, auf Anwendungen auf zuverlässige Verteilung wird verwiesen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Mihir Bellare, Silvio Micali: How to sign given any trapdoor function; 20th Symposium on Theory of Computing (STOC) 1988, ACM, New York 1988, 32–42.

    Google Scholar 

  2. Gerrit Bleumer: Vertrauenswürdige Schlüssel für ein Signatursystem, dessen Brechen beweisbar ist; Studienarbeit, Institut für Rechnerentwurf und Fehlertoleranz, Universität Karlsruhe 1990.

    Google Scholar 

  3. Gerrit Bleumer, Birgit Pfitzmann, Michael Waidner: A Remark on a Signature Scheme where Forgery can be Proved; Eurocrypt’90 - Abstracts, Århus, Denmark, May 1990, 403–407.

    Google Scholar 

  4. Ernest F. Brickell, John M. DeLaurentis: An Attack on a Signature Scheme Proposed by Okamoto and Shiraishi; Crypto’85, LNCS 218, Springer-Verlag, Berlin 1986, 28–32.

    Google Scholar 

  5. Holger Bürk, Andreas Pfitzmann: Digital Payment Systems Enabling Security and Unobservability; Computers & Security 8/5 (1989) 399–416.

    Article  Google Scholar 

  6. David Chaum, Ivan B. Damgård, Jeroen van de Graaf: Multiparty Computations ensuring privacy of each party’s input and correctness of the result; Crypto’87, LNCS 293, SpringerVerlag, Berlin 1988, 87–119.

    Google Scholar 

  7. David Chaum, A. Fiat, M. Naor: Untraceable Electronic Cash; Crypto ’88, LNCS 403, Springer Verlag, Berlin 1990, 319–327.

    Google Scholar 

  8. David Chaum, Sandra Roijakkers: Unconditionally Secure Digital Signatures; Abstracts of Crypto ’90, Santa Barbara 1990, 209–217.

    Google Scholar 

  9. Ivan Bjerre Damgård: Collision free hash functions and public key signature schemes; Eurocrypt ’87, LNCS 304, Springer-Verlag, Berlin 1988, 203–216.

    Google Scholar 

  10. Donald W. Davies, Wyn L. Price: Digital Signatures - An Update; Proc. 7th international conference on computer communication (ICCC) Sydney 1984, “The New World of the Information Society„, J. M. Bennett, T. Pearcey (eds.); Elsevier Science Publishers B. V. (North-Holland), 1985, 843–847.

    Google Scholar 

  11. Dorothy E. Denning: Digital Signatures with RSA and Other Public-Key Cryptosystems; Communications of the ACM 27/4 (1984) 388–392.

    Article  MathSciNet  Google Scholar 

  12. Whitfield Diffie, Martin E. Heilman: New Directions in Cryptography; IEEE Transactions on Information Theory 22/6 (1976) 644–654.

    Article  MATH  Google Scholar 

  13. Dennis Estes, Leonard M. Adleman, Kireeti Kompella, Kevin S. McCurley, Gary L. Miller: Breaking the Ong-Schnorr-Shamir Signature Scheme for Quadratic Number Fields; Crypto ’85, LNCS 218, Springer-Verlag, Berlin 1986, 3–13.

    Google Scholar 

  14. Jan Ekberg, Siegfried Herda, Jorma Virtamo: TeleTrusT - Technical concepts and basic Mechanisms; Research into Networks and Distributed Applications; R. Speth (ed.) Elsevier Science Publishers B. V., Brussels and Luxembourg, 1988, 523–533.

    Google Scholar 

  15. Taher ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms; IEEE Transactions on Information Theory 31/4 (1985) 469–472.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. N. Gilbert, F. J. Mac Williams, N. J. A. Sloane: Codes which detect deception; The Bell System Technical Journal 53/3 (1974) 405–424.

    MathSciNet  MATH  Google Scholar 

  17. Marc Girault: Hash-functions using modulo-N operations; Eurocrypt ’87, LNCS 304, Springer-Verlag, Berlin 1988, 217–226.

    Google Scholar 

  18. Oded Goldreich, Silvio Micali, Avi Wigderson: Proofs that Yield Nothing But their Validity and a Methodology of Cryptographic Protocol Design; 27th FOCS, IEEE Computer Society 1986, 174–187.

    Google Scholar 

  19. Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks; SIAM J. Comput. 17/2 (1988) 281–308.

    Google Scholar 

  20. Shafi Goldwasser, Silvio Micali, Charles Rackoff: The Knowledge Complexity of Interactive Proof Systems; SIAM J. Comput. 18/1 (1989) 186–207.

    Article  MathSciNet  MATH  Google Scholar 

  21. Wiebren de Jonge, David Chaum: Attacks on Some RSA Signatures; Crypto ’85, LNCS 218, Springer-Verlag, Berlin 1986, 18–27.

    Google Scholar 

  22. Ralph C. Merkle: Protocols for Public Key Cryptosystems; Proceedings of the 1980 Symposium on Security and Privacy, April 14–16, 1980 Oakland, California, 122–134.

    Google Scholar 

  23. Ralph C. Merkle: Protocols for Public Key Cryptosystems; AAAS Selected Symposium 69, Secure Communications and Asymmetric Cryptosystems; G. Simmons (ed.); Westview Press, Boulder 1982, 73–104.

    Google Scholar 

  24. Ralph Charles Merkle: Secrecy, authentication, and public key systems; UMI Research Press 1982.

    MATH  Google Scholar 

  25. Ralph C. Merkle: A digital signature based on a conventional encryption function; Crypto ’87, LNCS 293, Springer-Verlag, Berlin 1988, 369–378.

    Google Scholar 

  26. Moni Naor, Moti Yung: Universal One-way Hash Functions and their Cryptographic Applications; 21st Symposium on Theory of Computing (STOC) 1989, ACM, New York 1989, 33–43.

    Google Scholar 

  27. Andrew M. Odlyzko: Cryptanalytic Attacks on the Multiplicative Knapsack Cryptosystem and on Shamir’s Fast Signature Scheme; IEEE Transactions on Information Theory 30/4 (1984) 594–601.

    Article  MathSciNet  MATH  Google Scholar 

  28. Marshall Pease, Robert Shostak, Leslie Lamport: Reaching Agreement in the Presence of Faults; Journal of the ACM 27/2 (1980) 228–234.

    Article  MathSciNet  MATH  Google Scholar 

  29. Birgit Pfitzmann: Für den Unterzeichner sichere digitale Signaturen und ihre Anwendung; Diplomarbeit, Institut für Rechnerentwurf und Fehlertoleranz, Universität Karlsruhe 1989.

    Google Scholar 

  30. Birgit Pfitzmann, Michael Waidner: Formal Aspects of Fail-stop Signatures; Interner Bericht 22/90 der Fakultät für Informatik, Universität Karlsruhe, Dezember 1990.

    Google Scholar 

  31. Birgit Pfitzmann, Michael Waidner: Unbedingte Unbeobachtbarkeit mit kryptographischer Robustheit; diese Tagung.

    Google Scholar 

  32. Birgit Pfitzmann, Michael Waidner, Andreas Pfitzmann: Rechtssicherheit trotz Anonymität in offenen digitalen Systemen; Datenschutz und Datensicherung DuD 14/5–6 (1990) 243–253, 305–315.

    Google Scholar 

  33. Jean-Jaques Quisquater, C. Couvreur: Fast Decipherment Algorithm for RSA Public-Key Cryptosystem; Electronics Letters 18/21 (1982) 905–907.

    Article  Google Scholar 

  34. Michael O. Rabin: Digitalized Signatures; Foundations of Secure Computation, ed. by R.A. DeMillo, D.P. Dobkin, A.K. Jones, R.J. Lipton; Academic Press, N.Y. 1978, 155–166.

    Google Scholar 

  35. Ronald L. Rivest, Adi Shamir, Leonard Adleman: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems; Communications of the ACM 21/2 (1978) 120–126, nachgedruckt: 26/1 (1983) 96–99.

    Article  MathSciNet  MATH  Google Scholar 

  36. Michael Waidner, Birgit Pfitzmann: Unconditional Sender and Recipient Untraceability in spite of Active Attacks - Some Remarks; Interner Bericht 5/89 der Fakultät für Informatik, Universität Karlsruhe, März 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfitzmann, B., Waidner, M. (1987). Fail-stop-Signaturen und ihre Anwendung. In: Pfitzmann, A., Raubold, E. (eds) VIS ’91 Verläßliche Informationssysteme. Informatik-Fachberichte, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76562-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76562-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53911-7

  • Online ISBN: 978-3-642-76562-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics