Skip to main content

Evidence for Biological and Structural Diversity Among Scrapie Strains

  • Chapter
Transmissible Spongiform Encephalopathies:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 172))

Abstract

The uniqueness of individuals within any species is perpetuated through genetically programmed characteristics. This controlling influence on phenotypic traits is clearly important in multicellular and single celled organisms down to the simplest infectious agents, viruses and viroids. This phenomenon extends even to the infectious agents of scrapie and the other unconventional slow infections. Indeed, as documented by Bruce and Fraser in this volume, a variety of biological parameters are influenced by the inherent properties of scrapie agents independent of the host species. Additional information on the genetic interaction between host and scrapie agent as well as agents of the other unconventional slow infections has been detailed in several recent reviews (Carp et al. 1989b, c). With regard to those parameters under genetic control, our published work has concentrated on analyzing five of the mouse-adapted scrapie strains; ME7, 22A, 22L, 139A and 87V (Carp et al. 1984, 1985a, 1987; Carp and Callahan 1986; Kascsak et al. 1985, 1986, 1987; Rubenstein et al. 1986; Kim et al. 1987a, b) and three hamster adapted strains, 263K, 139-H and 22C-H (Kascsak et al. 1985, 1986; Carp et al. 1990).

This work was sponsored in part by the New York State Office of Mental Retardation and Development Disabilities and by Public Health Service Grants NS21349 and NS25308 from the National Institutes of Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellinger-Kawahara C, Diener TO, McKinley MP, Groth DF, Smith DR, Prusiner SB (1987a) Purified scrapie prions resist inactivation by procedures that hydrolyze, modify or shear nucleic acids. Virology 160:271–274

    Article  PubMed  CAS  Google Scholar 

  • Bellinger-Kawahara C, Cleaver JE, Diener TO, Prusiner SB (1987b) Purified scrapie prions resist inactivation by UV Irradiation. J Virol 61: 159–166

    PubMed  CAS  Google Scholar 

  • Bendheim PE, Potempska A, Kascsak RJ, Bolton DC (1988) Purification and partial characterization of the normal cellular homologue of the scrapie agent protein. J Infect Dis 158: 1198–1208

    Article  PubMed  CAS  Google Scholar 

  • Bookman JM, Kingsbury DT (1988) Immunological analysis of host and agent effects on Creutzfeldt-Jakob disease and scrapie prion proteins. J Virol 62: 3120–3127

    Google Scholar 

  • Bolten DC, Bendheim PE (1988) A modified host protein model of scrapie. Ciba Foud Symp 135:164–177

    Google Scholar 

  • Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218: 1309–1311

    Article  PubMed  CAS  Google Scholar 

  • Bolton DC, Meyer RK, Prusiner SB (1985) Scrapie PrP 27–30 is a sialoglycoprotein. J Virol 53:596–606

    PubMed  CAS  Google Scholar 

  • Bolton DC, Bendheim PE, Marmorstein AD, Potempska A (1987) Isolation and structural studies of the intact scrapie agent protein. Arch Biochem Biophys 258: 579–590

    Article  PubMed  CAS  Google Scholar 

  • Borras T, Gibbs CJ Jr (1986) Molecular hybridization studies with scrapie brain nucleic acids I. Search for specific DNA sequences. Arch Virol 88: 67–78

    Article  PubMed  CAS  Google Scholar 

  • Borras T, Merendino JJ Jr, Gibbs CJ Jr (1986) Molecular hybridization studies with scrapie brain nucleic acids II. Differential expression in scrapie hamster brain. Arch Virol 88: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Bruce ME (1985) Agent replication dynamics in a long incubation period model of mouse; scrapie. J Gen Virol 66: 2517–2522

    Article  PubMed  Google Scholar 

  • Bruce ME, Dickinson AG (1979) Biological stability of different classes of scrapie agent. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system, vol 2, Academic, New York, pp 71–86

    Google Scholar 

  • Bruce ME, Dickinson AG, Fraser H (1976) Cerebral amyloidosis in scrapie in the mouse: effect of agent strain and mouse genotype. Neuropathol Appl neurobiol 2: 471–478

    Article  Google Scholar 

  • Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST, DeArmond S, Westaway D, Prusiner S (1986) Linkage of prion protein and scrapie incubation time genes. Cell 46: 503–511

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Callahan SM (1986) Scrapie incubation periods and end-point titers in mouse strains differeing at the H-2d locus. Intervirology 26: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Callahan SM, Sersen EA, Moretz RC (1984) Preclinical changes in weight of scrapie-infected mice as a function of scrapie agent-mouse strain combination. Intervirology 21: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Merz PA, Moretz RC, Somerville RA, Callahan SM, Wisniewski HM (1985a) Biological properties of scrapie: an uncoventional slow virus. In: Maramorosch K, McKelvey Jr JJ (eds) Subviral pathogens of plants and animals: viroids and prions. Academic, New York, pp 425–463

    Google Scholar 

  • Carp RI, Merz PA, Kascsak RJ, Merz GS, Wisniewski HM (1985b) Nature of the scrapie agent: Current status of facts and hypotheses. J Gen Virol 66: 1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Moretz RC, Natelli M, Dickinson AG (1987) Genetic control of scrapie: incubation period and plaque formation in I mice. J Gen Virol 68: 401–407

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Kim YS, Callahan SM (1989a) Scrapie-induced alterations in glucose tolerance in mice. J Gen Virol 70: 827–835

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Kim YS, Kascsak RJ, Merz PA, Rubenstein R (1989b) Classic gentics of scrapie. In: Iqbal K, Wisniewski HM, Winblso B (eds) Alzheimer’s disease and related disorders. Liss, New York, pp 567–582

    Google Scholar 

  • Carp RI, Kascsak RJ, Wisniewski HM, Merz PA, Rubenstein R, Bendheim P, Bolton D (1989c) The nature of the unconventional slow infection agents remains a puzzle. Alzheimer Dis Assoc Disord 3 (1/2): 79–99

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Kim YS, Callahan SM (1990) Pancreatic lesions and hypoglycemia-hyperinsulinemia in scrapie-injected hamsters. J Infect Dis 161: 462–466

    Article  PubMed  CAS  Google Scholar 

  • Czub M, Braig HR, Diringer H (1986) Pathogenesis of scrapie: Study of the temporal development of clinical symptoms, of infectivity titres and scrapie associated fibrils in brains of hamsters infected intraperitoneally. J Gen Virol 67: 2005–2009

    Article  PubMed  Google Scholar 

  • Czub M, Braig HR, Diringer H (1988) Replication of scrapie agent in hamsters infected intracerebrally confirms the pathogenesis of an amyloid-inducing virosis. J Gen Virol 69: 1753–1756

    Article  PubMed  Google Scholar 

  • Dickinson AG, Fraser H (1979) An assessment of the genetics of scrapie in sheep and mice. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system, vol 1. Academic, New York, pp 367–406

    Google Scholar 

  • Dickinson AG, Meikle VMH (1969) A comparison of some biological characteristics of the mouse-passaged scrapie agents, 22A and ME7. Genet Res 13: 213–225

    Article  PubMed  CAS  Google Scholar 

  • Dickinson AG, Outram GW (1979) The scrapie replication-site hypothesis and its implication for pathogenesis. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system, vol 2. Academic, New York, pp 13–31

    Google Scholar 

  • Dickinson AG, Bruce ME, Fraser H, Kimberlin RH (1984) Scrapie strain differences; the implication of stability and mutation. In: Tateishi J (ed) Proceedings of workshop on slow transmissible diseases, Japanese Ministry of Health and Welfare, Tokyo, p 105

    Google Scholar 

  • Diringer H, Hilmert H, Simon D, Werner E, Ehlers B (1983) Towards purification of the scrapie agent. Eur J Biochem 134: 555–560

    Article  PubMed  CAS  Google Scholar 

  • Duguid JR, Rohwer RG, Seed B (1988) Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci USA 85: 5738–5742

    Article  PubMed  CAS  Google Scholar 

  • Fraser H (1979) Neuropathology of scrapie: the precision of the lesions and their diversity. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system, vol 1. Academic, New York, pp 387–406

    Google Scholar 

  • Fraser H, Bruce ME (1973) Argyrophilic plaques in mice inoculated with scrapie from particular sources. Lancet i: 617–618

    Article  Google Scholar 

  • Fraser H, Dickinson AG (1973) Scrapie in mice: agent-strain differences in the distribution and intensity of grey matter vacuolation J Comp Pathol 83: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Goldgaber D, Goldfarbh LG, Brown P, Asher DM, Brown WT, Len S, Teener JW, Feinstone SM, Rubenstien R, Kascsak RJ, Boellard JW, Gajdusek DC (1989) PrP gene mutations in familial Creutzfeldt-jakob disease and Gerstmann-Straussler syndme. J Exp Neurol 106: 204–206

    Article  CAS  Google Scholar 

  • Haraguchi T, Fisher S, Olofsson T, Endo D, Groth A, Tarentino A, Borchelt DR, Teplow D, Hood L, Burlingame A, Lycke E, Kobata A, Pursiner SB (1989) Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch Biochem Biophys 274: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Hope J, Morton LJD, Farquhar CF, Multhaup G, Beyreuther K, Kimberlin RH (1986) The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO 5: 2591–2597

    CAS  Google Scholar 

  • Hope J, Multhaup G, Reekie LJD, Kimberlin RH, Beyreuther K (1988) Molecular pathology of scrapie associated fibril protein (PrP) in mouse brain affected by the ME7 strain of scrapie. Eur J Biochem 172:271–277

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, Westaway D, Ott J, Prusiner SB (1989) Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Hunter N, Hope J, McConnell I, Dickinson A (1987) Linkage of the scrapie-associated fibril protein (PrP) gene and Sinc using congenie mice and restriction fragment length polymorphism analysis. J Gen Virol 68: 2711–2715

    Article  PubMed  CAS  Google Scholar 

  • Kascsak RJ, Rubenstein R, Merz PA, Carp RI, Wisniewski HM, Diringer H (1985) Biochemical differences among scrapie-associated fibrils support the biological diversity of scrapie agents. J Gen Virol 66: 1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Kascsak RJ, Rubenstein R, Merz PA, Carp RI, Robakis NK, Wisniewski HM, Diringer H (1986) Immunological comparison of scrapie associated fibrils isolated from animals infected with four different scrapie strains. J Virol 59: 676–683

    PubMed  CAS  Google Scholar 

  • Kascsak RJ, Rubenstein R, Merz PA, Tonna-DeMasi M, Fersko R, Carp RI, Wisniewski HM, Diringer H (1987) Mouse polyclonal and monoclonal antibody to SAF (PrP) protein. J Virol 61: 3688–3693

    PubMed  CAS  Google Scholar 

  • Kim YS, Carp RI, Callahan SM, Wisniewski HM (1987a) Scrapie-induced obesity in mice. J Infect Dis 156:402–405

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Carp RI, Callahan SM, Wisniewski HM (1987b) Clinical course of three scrapie strains in mice injected stereotaxically in different brain regions. J Gen Virol 68: 695–702

    Article  PubMed  Google Scholar 

  • Kim YS, Carp RI, Callahan SM, Wisniewski HM (1988) Adrenal involvement in scrapie-induced obesity. Proc Soc Exp Biol Med 189: 21–27

    PubMed  CAS  Google Scholar 

  • Kimberlin RH (1982) Scrapie agent: prions or virinos? Nature 297: 107–108

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin RH, Walker CA (1977) Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 34: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin RH, Cole S, Walker CA (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J Gen Virol 68: 1875–1881

    Article  PubMed  Google Scholar 

  • Kimberlin RH, Walker CA, Fraser H (1989) The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol 70: 2017–2025

    Article  PubMed  Google Scholar 

  • Kingsbury DT, Kasper KC, Stites DP, Watson JD, Hogan RN, Prusiner SB (1983) Genetic control of scrapie and Creutzfeldt-Jakob disease in mice. J Immunol 131: 491–496

    PubMed  CAS  Google Scholar 

  • Manuelidis L, Murdoch G, Manuelidis EE (1988) Potential involvement of retroviral elements in human dementias. Ciba Found Symp 135: 117–129

    PubMed  CAS  Google Scholar 

  • McKinley MP, Bolton DC, Prusiner SB (1983) A protease resistant protein is a structural component of the scrapie prion. Cell 35: 57–62

    Article  PubMed  CAS  Google Scholar 

  • Merz PA, Rohwer RG, Kascsak R, Wisniewski HM, Somerville RA, Gibbs CJ Jr, Gajdusek DC (1984) Infection-specific particle from the unconventional slow virus diseases. Science 225: 435–440

    Article  Google Scholar 

  • Merz PA, Kascsak RJ, Rubenstein R, Carp RI Wisniewski HM (1987) Antisera to scrapie-associated fibril protein and prion protein decorate scrapie-associated fibrils. J Virol 61: 42–49

    PubMed  CAS  Google Scholar 

  • Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83: 2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Oesch B, Westaway D, Walchli M, McKinely MP, Kent SBH, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C (1985) A cellular gene encodes scrapie PrP 27–30 protein. Cell 40: 735–746

    Article  PubMed  CAS  Google Scholar 

  • Outram GW (1972) Changes in drinking and feeding habits of mice with experimental scrapie. J Comp Pathol 82: 415–427

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1987) Prions and neurodegenerative diseases. N Engl J Med 317: 1571–1598

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Gabizon R, McKinley MP (1987) On the biology of prions. Acta neuropathol (Berl) 72: 299–314

    Article  CAS  Google Scholar 

  • Rohwer RG (1984) Scrapie infectious agent is virus-like in size and susceptibility to inactivation. Nature 308: 658–662

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein R, Kascsak RJ, Merz PA, Papini MC, Carp RI, Robakis NK, Wisniewski HM (1986) Detection of scrapie-associated fibril (SAF) proteins using anti-SAF antibody in non-purified tissue preparations. J Gen Virol 67: 671–681

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein R, Merz PA, Kascsak RJ, Carp RI, Scalici CL, Fama CL, Wisniewski HM (1987) Detection of scrapie associated fibrils (SAF) and SAF proteins from scrapie affected sheep. J Infect Dis 156: 36–42

    Article  PubMed  CAS  Google Scholar 

  • Scott M, Foster D, Mirenda C, Serban D, Coufal F, Walchli M, Torchia M, Groth D, Carlson G, DeArmond SJ, Westaway D, Prusiner SB (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176: 21–30

    Article  PubMed  CAS  Google Scholar 

  • Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, Prusiner SB (1987) Distinct prion proteins in short and long scrapie incubation period mice. Cell 51: 651–662

    Article  PubMed  CAS  Google Scholar 

  • Wietgrefe S, Zupancic M, Haase A, Chesebro B, Race R, Frey W II, Rustan T, Friedman RL (1985) Cloning of a gene whose expression is increased in scrapie and in senile plaques in human brain. Science 230: 1177–1179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kascsak, R.J., Rubenstein, R., Carp, R.I. (1991). Evidence for Biological and Structural Diversity Among Scrapie Strains. In: Chesebro, B.W. (eds) Transmissible Spongiform Encephalopathies:. Current Topics in Microbiology and Immunology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76540-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76540-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76542-1

  • Online ISBN: 978-3-642-76540-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics