Advertisement

On the Vertex Enumeration Problem in Cutting Plane Algorithms of Global Optimization

  • Reiner Horst

Abstract

We consider the following vertex enumeration problem:
  1. (VE)

    Given a hyperplane H and a polytope P with known vertex set V(P) find the vertex set of the polytope \(\bar P = P \cap H\).

     

Keywords

Outer Approximation Neighbourhood Problem Adjacency List Hash Code Vertex Enumeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulatov, V.P.: Embedding Methods in Optimization Problems, Nauka, Novosibirsk 1977 (in Russian).Google Scholar
  2. Bulatov, V.P., and Kasinkaya, L.I.: Some Methods of Concave Minimization on a Convex Polyhedron and their Applications, in: Methods of Optimization and their Applications, Nauka, Novosibirsk 1982, pp. 71–80 (in Russian).Google Scholar
  3. Chen, P.C., Hansen, P., and Jaumard, B.: On-line and Off-line Vertex Enumeration by Adjacency Lists, Discussion Paper, Rutcor and Gerard, 1990.Google Scholar
  4. Dyer, M.E.: The Complexity of Vertex Enumeration Methods, in: Mathematics of Operations Research 8, 1983, pp. 381–402.Google Scholar
  5. Emelichev, V.A., and Kovalev, M.M.: Solving Certain Concave Programming Problems by Successive Approximation, in: Izvestya Akademii Nauk BSSR 6, 1970, pp. 27–34 (in Russian).Google Scholar
  6. Falk, J.E., and Hoffman, K.L.: A Successive Underestimation Method for Concave Minimization Problems, in: Mathematics of Operations Research 1, 1976, pp. 251–259.Google Scholar
  7. Falk, J.E., and Hoffman, K.L.: Concave Minimization via Collapsing Polytopes, in: Operations Research 34, 1986, pp. 919–926.Google Scholar
  8. Gal, T.: Determination of all Neighbours of a Degenerate Point in Polytopes, Working Paper 17b, Fernuniversität Hagen, Hagen 1978.Google Scholar
  9. Gal, T.: Postoptimal Analysis, Parametric Programming, and Related Topics, New York 1979.Google Scholar
  10. Gal, T.: On the Structure of the Set of Bases of a Degenerate Point, in: Journal of Optimization Theory and Applications 45, 1985, pp. 577–589.CrossRefGoogle Scholar
  11. Gal, T.: Shadow Prices and Sensivity Analysis in Linear Programming under Degeneracy - A State-of-the-Art Survey, in: Operations Research Spektrum 8, 1986, pp. 59–77.CrossRefGoogle Scholar
  12. Gal, T., Kruse, H.J., and Zörnig, P.: Survey and Solved and Open Problems in the Degeneracy Phenomenon, in: Mathematical Programming, Series B, 42, 1988, pp. 125–133.CrossRefGoogle Scholar
  13. Geue, F.: Eine Pivotauswahlregel und die durch sie induzierten Teilgraphen des positiven Entartungsgraphen, Working Paper No. 141, Fernuniversität Hagen, Hagen 1989.Google Scholar
  14. Glover, F.: Polyhedral Annexation in Mixed Integer and Combinatorial Programming, in: Mathematical Programming 8, 1975, pp. 161–188.CrossRefGoogle Scholar
  15. Hoffman, K.L.: A Method for Globally Minimizing Concave Functions over Convex Sets, in: Mathematical Programming 20, 1981, pp. 22–32.CrossRefGoogle Scholar
  16. Horst, R.: On the Global Minimization of Concave Functions: Introduction and Survey, in: Operations Research Spektrum 6, 1984, pp. 195–205.CrossRefGoogle Scholar
  17. Horst, R.: Deterministic Global Optimization: Some Recent Advances and New Fields of Application, in: Naval Research Logistics 37, 1990, pp. 433–471.CrossRefGoogle Scholar
  18. Horst, R., Thoai, N.V., and de Vries, J.: On Finding New Vertices and Redundant Constraints in Cutting Plane Algorithms for Global Optimization, in: Operations Research Letters 7, 1988, pp. 85–90.CrossRefGoogle Scholar
  19. Horst, R., Thoai, N.V., and Tuy, H.: Outer Approximation by Polyhedral Convex Sets, in: Operations Research Spektrum 9, 1987, pp. 153–159.CrossRefGoogle Scholar
  20. Horst, R., Thoai, N.V., and Tuy, H.: On an Outer Approximation Concept in Global Optimization, in: Optimization 20, 1989, pp. 255–264.CrossRefGoogle Scholar
  21. Horst, R., and Tuy, H.: Global Optimization - Deterministic Approaches, Berlin et al. 1990.Google Scholar
  22. Istomin, L.A.: A Modification of Tuy’s Method for Minimizing a Concave Function over a Polytope, in: USSR Computational Mathematics and Mathematical Physics 17, 1977, pp. 1582–1592 (in Russian).CrossRefGoogle Scholar
  23. Khang, D.B., and Fujiwara, O.: A New Algorithm to Find all Vertices over a Polytope, in: Operations Research Letters 8, 1989, pp. 261–264.CrossRefGoogle Scholar
  24. Knuth, D.E.: Searching and Sorting, The Art of Computer Programming, Volume 3, Addison- Wesley 1973.Google Scholar
  25. Kruse, H.J.: Degeneracy Graphs and the Neighbourhood Problem. Lecture Notes in Economics and Mathematical Systems No. 260, Berlin et al. 1986.Google Scholar
  26. Matheiss, T.H., and Rubin, D.S.: A Survey and Comparison of Methods for Finding all Vertices of Convex Polyhedral Sets, in: Mathematics of Operations Research 5, 1980, pp. 167–185.CrossRefGoogle Scholar
  27. Thach, P.T., and Tuy, H.: Global Optimization under Lipschitzian Constraints, in: Japan Journal of Applied Mathematics 4, 1987, pp. 205–217.CrossRefGoogle Scholar
  28. Thieu, T.V., Tam, B.T., and Ban, T.V.: An Outer Approximation Method for Globally Minimizing a Concave Function over a Compact Convex Set, in: Acta Mathematica Vietnamica 8, 1983, pp. 21–40.Google Scholar
  29. Thoai, N.V.: A Modified Version of Tuy’s Method for Solving D.C. Programming Problems, in: Optimization 19, 1988, pp. 665–674.CrossRefGoogle Scholar
  30. Tuy, H.: On Outer Approximation Methods for Solving Concave Minimization Problems, in: Acta Mathematica Vietnamica 8, 1983, pp. 3–34.Google Scholar
  31. Tuy, H.: On a Polyhedral Annexation Method for Concave Minimization, Preprint, Institute of Mathematics, Hanoi 1986.Google Scholar
  32. Tuy, H.: Convex Programs with an Additional Reverse Convex Constraint, in: Journal of Optimization Theory and Applications 52, 1987, pp. 463–485.CrossRefGoogle Scholar
  33. Tuy, H.: Polyhedral Underestimation Method for Concave Minimization, Preprint, Institute of Mathematics, Hanoi 1988.Google Scholar
  34. Tuy, H., and Thuong, N.V.: On the Global Minimization of a Convex Function under General Nonconvex Constraints, in: Applied Mathematics and Optimization 18, 1988, pp. 119–142.CrossRefGoogle Scholar
  35. Vaish, H., and Shetty, C.H.: The Bilinear Programming Problem, in: Naval Research Logistics Quarterly 23, 1976, pp. 303–309.CrossRefGoogle Scholar
  36. Zörnig, P.: Theorie der Entartungsgraphen und ihre Anwendung zur Erklärung der Simplexzyklen, Dissertation, Fernuniversität Hagen, Hagen 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Reiner Horst

There are no affiliations available

Personalised recommendations