Hereditary Cardiomyopathy, Syrian Hamster

  • Rudolf W. Mueller
  • Suzanne Desjardins
Part of the Monographs on Pathology of Laboratory Animals book series (LABORATORY)


Syrian hamsters with hereditary cardiomyopathy usually have myocardial changes by 30–40 days of age or older. Fine white streaks in the same orientation as the myocardial fibers are visible in the epicardial aspect of the heart. Dilation of the ventricles tends to be bilateral and dependent on the underlying myocardial damage. Extensive fibrosis is sometimes associated with thinning of the ventricular wall (Fig. 17) and is evident in older animals (> 120 days) where calcified foci are easily demonstrated by Von Kossa stain (Luna 1960). Cross sections through the ventricles reveal the disseminated nature of the myopathy (Fig. 18). In many older animals mural thrombosis leads to severe dilation of the atria (Fig. 19) and obstruction of ventricles (Jasmin and Proschek 1982) Muscular degeneration is not confined to the myocardium. Skeletal muscles, especially intercostal muscles, and diaphragm are often extensively involved (Jasmin and Bajusz 1973).


Atrial Natriuretic Peptide Syrian Hamster Calcify Focus Cardiomyopathic Hamster Severe Dilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caulfield JB, Shelton RW (1973) Spontaneous cardio-myopathy in guinea pigs. Recent Adv Stud Cardiac Struct Metab 2: 353–360PubMedGoogle Scholar
  2. Desjardins S, Mueller RW (1988) Milrinone treatment of cardiomyopathic hamsters (CHF 147). FASEB 2: A 366Google Scholar
  3. Desjardins S, Mueller RW, Hubert RS, Cauchy MJ (1989) Effects of milrinone treatment in cardio-myopathic hamsters (CHF 147) with severe conges-tive heart failure. Cardiovasc Res 23: 620–630PubMedCrossRefGoogle Scholar
  4. Doerr W, Mall G (1979) Cardiomyopathie. Ange- borene, erworbene und Differentialdiagnose. Pathologe 1: 7–24PubMedGoogle Scholar
  5. Eaton GJ, Custer RP, Johnson FN, Stabenow KT (1978) Dystrophic cardiac calcinosis in mice, genetic, hormonal and dietary influences. Am J Pathol 90: 173– 186PubMedGoogle Scholar
  6. Edwards BS, Ackermann DM, Schwab TR, Heublein DM, Edwards WD, Wold LE, Burnett JC Jr (1986) The relationship between atrial granularity and circulating atrial natriuretic peptide in hamsters with congestive heart failure. Mayo Clin Proc 61:517– 521PubMedGoogle Scholar
  7. Fitchett DH, Scott J, Stephens HR, Peters TJ (1979) Myocardial subcellular fractionation studies on cardiomyopathic Syrian hamsters. Cardiovasc Res 13: 260–268PubMedCrossRefGoogle Scholar
  8. Jasmin G, Bajusz E (1973) Polymyopathie et cardiomyopathie hereditaire chez le hamster de Syrie. Inhibition selective des lesions du myocarde. Ann Anat Pathol (Paris) 18: 49–65Google Scholar
  9. Jasmin G, Proschek L (1982) Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. I. Progression of heart and skeletal muscle lesions in the UM-X7.1 line. Muscle Nerv 5: 20–25CrossRefGoogle Scholar
  10. Jasmin G, Proschek L (1983) Paradoxical effect of isoproterenol on hamster hereditary polymyopathy. Muscle Nerve 4: 408–415CrossRefGoogle Scholar
  11. Jasmin G, Proschek L, Dhalla NS (1986) The hypothyroid state in cardiomyopathic hamsters (Abstr). J Mol Cell Cardiol [Suppl 3] 18: 36CrossRefGoogle Scholar
  12. Kako KJ, Thornton MJ, Heggtveit HA (1974) Depressed fatty acid and acetate oxidation and other metabolic defects in homogenates from hearts of hamsters with hereditary cardiomyopathy. Circ Res 34: 570–580PubMedGoogle Scholar
  13. Kuo TH, Giacomelli F, Wiener J (1984) Lysosomal and non lysosomal proteolytic activities in experimental diabetic cardiomyopathy. Exp Mol Pathol 40: 280–287PubMedCrossRefGoogle Scholar
  14. Lemanski LF, Tu Z (1983) Immunofluorescent studies for myosin, actin, tropomyosin and alpha-actinin in cultured cardiomyopathic hamster heart cells. Dev Biol 97: 338–348PubMedCrossRefGoogle Scholar
  15. Lossnitzer K, Bajusz E (1974) Water and electrolyte alterations during the life course of the BIO 14.6 Syrian golden hamster. A disease model of a hereditary cardiomyopathy. J Mol Cell Cardiol 6: 163–177PubMedCrossRefGoogle Scholar
  16. Lossnitzer K, Janke J, Hein B, Stauch M, Fleckenstein A (1975) Disturbed myocardial calcium metabolism: a possible pathogenetic factor in the hereditary cardiomyopathy of the Syrian hamster. Recent Adv Stud Cardiac Struct Metab 6: 207–217PubMedGoogle Scholar
  17. Luna LG (1960) Armed Forces Institute of Pathology manual of histologic staining technics. Von Kossa’s method for calcium. McGraw-Hill, New YorkGoogle Scholar
  18. Markiewicz W, Wu SS, Parmley WW, Higgins CB, Sievers R, James TL, Wikmann-Coffelt J, Jasmin G (1986) Evaluation of the hereditary Syrian hamster cardiomyopathy by 31P nuclear magnetic resonance spectroscopy: improvement after acute verapamil therapy. Circ Res 59: 597–604PubMedGoogle Scholar
  19. Matsumori A, Kawai C (1982) An animal model of congestive (dilated) cardiomyopathy: dilatation and hypertrophy of the heart in the chronic stage in DBA/2 mice with myocarditis caused by encephalomyocarditis virus. Circulation 66: 355–360PubMedCrossRefGoogle Scholar
  20. McMartin DN (1979) Morphologic lesions in aging Syrian hamsters. J Gerontol 34: 502–511PubMedGoogle Scholar
  21. McMartin DN, Dodds WJ (1982) Atrial thrombosis in 22 Rudolf W. Mueller and Suzanne Desjardins aged Syrian hamsters. Am J Pathol 107: 277–279PubMedGoogle Scholar
  22. Mohr W, Lossnitzer K (1974) Morphologische Untersuchungen an Hamstern des Stammes BIO 8262 mit erblicher Myopathie und Kardiomyopathie. Beitr Pathol 153: 178–193PubMedGoogle Scholar
  23. Onishi S, Kawaguchi N, Wada A (1986) A pathological study on hereditary cardiomyopathic hamster using analytical electron microscopy (Abstr). J Mol Cell Cardiol 18 (Suppl 1): (abstr 231)Google Scholar
  24. Proschek L, Jasmin G (1982) Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. II. Development of heart necrotic changes in relation to defective mitochondrial function. Muscle Nerve 5: 26–32PubMedCrossRefGoogle Scholar
  25. Rossner KL, Coudrai P (1986) Contractile properties of papillary muscle from young cardiomyopathic hamsters: effects of isoprenaline. Cardiovasc Res 20: 609– 613PubMedCrossRefGoogle Scholar
  26. Rossner KL, Sachs HG (1978) Electrophysiological study of Syrian hamster hereditary cardiomyopathy. Cardiovasc Res 12: 436–443PubMedCrossRefGoogle Scholar
  27. Sandritter W ( 1981 a) Mitralinsuffizienz. In: Sandritter W (ed) Allgemeine Pathologie. Schattauer, Stuttgart, p 309Google Scholar
  28. Sandritter W (1981b) Mitralstenose. In: Sandritter W, Thomas C (eds) Makropathologie. Schattauer, Stuttgart, pp 36–37Google Scholar
  29. Sandritter W (1981c) Blutstauung der Leber. In: Sandritter W, Thomas C (eds) Makropathologie. Schattauer, Stuttgart, pp 143–145Google Scholar
  30. Strobeck JE, Factor SM, Bhan A, Sole M, Liew CC, Fein F, Sonnenblick EH (1979) Hereditary and acquired cardiomyopathies in experimental animals: mechanical, biochemical, and structural features. Ann NY Acad Sci 317: 59–88PubMedGoogle Scholar
  31. Taylor WJ (1983) Genetic aspects of the cardiomyopathies. Prog Med Genet 5: 163–189PubMedGoogle Scholar
  32. Thakar JH, Percy DH, Strickland KP (1977) Ocular abnormalities in the myopathic hamster (UM-X7.1 strain). Invest Ophthalmol Vis Sci 16: 1047–1052PubMedGoogle Scholar
  33. Tu ZH, Lemanski LF (1982) Scanning and transmission electron microscopy of dissociated normal and cardiomyopathic hamster heart cells (in Chinese). Chung Kuo Yao Li Hsueh Pao 3: 117–119PubMedGoogle Scholar
  34. Van Vleet JF, Ferrans VJ (1986) Myocardial diseases of animals. Am J Pathol 124: 98–178PubMedGoogle Scholar
  35. Van Vleet JF, Ferrans VJ (1987) Ultrastructural changes in inherited cardiac calcinosis of DBA/2 mice. Am J Vet Res 48: 255–261PubMedGoogle Scholar
  36. Wrogemann K, Blanchaer MC, Thakar JH, Mezon BJ (1975) On the role of mitochondria in the hereditary cardiomyopathy of the Syrian hamster. Recent Adv Stud Cardiac Struct Metab 6: 231–241PubMedGoogle Scholar
  37. Yamashita T, Hayashi H, Kaneko M, Kamikawa T, Kobayashi A, Yamazaki N, Miura K, Shirasawa H, Ni- shimura M (1985) Carnitine derivatives in hereditary cardiomyopathic animals. Jpn Heart J 26: 833–844PubMedCrossRefGoogle Scholar
  38. Yoon CH, DeGroot CT, Peterson JS (1980) Linkage group V in the Syrian hamster; cardiomyopathy and lethal gray. J Hered 71: 287–288PubMedGoogle Scholar
  39. York CM, Cantrell CR, Borum PR (1983) Cardiac car-, nitine deficiency and altered carnitine transport in cardiomyopathic hamsters. Arch Biochem Biophys 221: 526–533PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Rudolf W. Mueller
  • Suzanne Desjardins

There are no affiliations available

Personalised recommendations