Non Equilibrium Flow in an Arc-Jet

  • P. Rostand
  • R. W. Mac Cormack
Conference paper


A code was recently developed to simulate the expansion of a weakly ionized nitrogen plasma in a plenum chamber. It relies on a state of the art modeling of the relevant phenomena (chemical and thermal nonequilibrium, species diffusion, stress and conductive heat transfer, action of the electric field), and on a fully coupled, implicit, finite volume upwind numerical approximation of the governing equations. The method is outlined below, more details can be found in [25].


Convection Recombination Librium Rium Boris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Workshop on Hypersonic Flows and Reentry Problems, GAMNI-SMAI, Antibes (France), Jan. 1990.Google Scholar
  2. [2]
    R. Abgrall, Extension of Roe’s approximate Riemann solver to equilibrium and nonequilibrium flows, preprint, June-1989.Google Scholar
  3. [3]
    F.G. Blottner, M. Johnson and M. Ellis, Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures, Sandia Lab, SC-RR-70-T54, 1971.Google Scholar
  4. [4]
    G.V. Candler and R.W. Mac Cormack, The Computation of Hypersonic Ionized Flows in Chemical and Thermal Nonequilibrium, AIAA 88-0511.Google Scholar
  5. [5]
    G.V. Candler, Translation-Vibration-Dissociation Coupling in Nonequilibrium Hy¬personic Flows, AIAA 89-1739, Buffalo, June 1989.Google Scholar
  6. [6]
    G.V. Candler, PhD Thesis, Stanford University, 1988.Google Scholar
  7. [7]
    M.G. Dunn and J.A. Lordi, Measurements of N Dissociative Recombination in Expanding Nitrogen Flows, AIAA Journal, Vol 8, No 2, Feb 1970.Google Scholar
  8. [8]
    S.G. Dunn and S.W. Kang, Theoretical and Experimental Studies of Reentry Plasmas, NASA CR 2232, April 1973.Google Scholar
  9. [9]
    A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws, Journal of Computational Physics vol 49, p 357, 1983.CrossRefMATHADSMathSciNetGoogle Scholar
  10. [10]
    B. Larrouturou and L. Fezoui, On the Equations of Multicomponent Perfect or Real Gas Inviscid Flow, in Non Linear Hyperbolic Problems, Lecture Notes in Mathematics, Springer Verlag, 1989.Google Scholar
  11. [11]
    B. Larrouturou, Recent Progress in Reactive Flow Computations, INRIA /GAMNI/ SMAI conference, Paris, Feb 1990.Google Scholar
  12. [12]
    G.H. Lee, Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles, ed. H.F. Nelson, in Progress in Aeronautics and Astronautics, 96, pp 395–418.Google Scholar
  13. [13]
    R.W. Mac Cormack, Current Status of Numerical Solutions of the Navier-Stokes Equations, AIAA 85-0032, Reno, 1985.Google Scholar
  14. [14]
    R.W. Mac Cormack and G.V. Candler, The Solution of the Navier-Stokes Equations using Gauss-Seidel Line Relaxation, Computer and Fluids, Vol 17, n° 1, pp 135–150, 1989.CrossRefADSGoogle Scholar
  15. [15]
    L. Marraifa, G.S. Dulikravitch and G.S. Deiwert, Numerical Simulation of Two- Dimensional Viscous, Unsteady Dissociating Nitrogen Flows, AIAA 87-2549, Monterey, 1987.Google Scholar
  16. [16]
    P.V. Marrone and C.E. Treanor, Chemical Relaxation with Preferential Dissociation from Excited Vibrational levels, The Physics of Fluids, vol 6, n° 9, sept 1963.Google Scholar
  17. [17]
    A.F. Okuno and C. Park, Stagnation Point Heat Transfer Rate in Nitrogen Plasma Flows: Theory and Experiment, Journal of Heat Transfer,-August 1970.Google Scholar
  18. [18]
    E.S. Oran and J.P. Boris, Numerical Simulation of Reactive Flow, Elsevier, 1987.MATHGoogle Scholar
  19. [19]
    S. Osher and S. Chakravarthy, Upwind Difference Schemes for the Hyperbolic System of Conservation Laws, Mathematics of Computation, April 1982.Google Scholar
  20. [20]
    C. Park, Nonequilibrium in Hypersonic Flows, Lecture Notes, 1988.Google Scholar
  21. [21]
    C. Park, Nonequilibrium Hypersonic Aero thermodynamics, Wiley, 1989.Google Scholar
  22. [22]
    C. Park, Assessment of Two-Temperature Kinetic Model for Ionizing Air, Journal of Thermophysics, vol 3, N° 3, July 1989.Google Scholar
  23. [23]
    P.L. Roe, Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, Journal of Computational Physics, vol 43, 1981.Google Scholar
  24. [24]
    P. Sagnier and L. Marraffa Parametric Study of Thermal and Chemical Nonequilibrium Nozzle Flow, AIAA 89-1856, Buffalo, 1989.Google Scholar
  25. [25]
    P. Rostand and R.W. Mac Cormack, CFD modeling of an arc-heated jet, AIAA 90-1475, Seattle, 1990.Google Scholar
  26. [26]
    L. Spitzer, Physics of Fully Ionized Gases, Interscience Publishers, New York, 1956.MATHGoogle Scholar
  27. [27]
    C.E. Treanor and P.V. Marrone, Effect of Dissociation on the Rate of Vibrational Relaxation, The Physics of Fluids, vol 3, n° 9, sept 1962.Google Scholar
  28. [28]
    B. Stouffiet, A. Descamps and M.P. Leclerq, INRIA/GAMNI/SMAI conference, Paris, Feb 1990.Google Scholar
  29. [29]
    W.G. Vincenti and C.H. Kruger, Introduction to Physical Gas Dynamics, Wiley, 1965.Google Scholar
  30. [30]
    C.R. Wilke, A Viscosity Equation for Gas Mixtures, Journal of Chemical Physics, 18, pp 517–519, 1950.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P. Rostand
    • 1
  • R. W. Mac Cormack
    • 2
  1. 1.Analatom Inc.SunnyvaleUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations