Advertisement

Numerical analysis of chemically reacting inviscid flow in 2-D

  • M. Fey
  • R. Jeltsch
  • P. Karmann
Conference paper

Abstract

During the reentry of spaceflight vehicles at an altitude of approximately 65 km the velocity of the vehicle is about 8 km/s in atmospheric air with a low density of about 10−4 kg/m 3. Moreover in this altitude the temperature and the pressure are 240 K and 10 Pa (at standard conditions the values of the density and pressure are approximately 1.22 kg/m 3 and 105 Pa, respectively). With a sound speed of 330 m/s we obtain a Mach number of 25 during this part of the reentry. The problem considered here is to calculate the shock position and flow properties for such hypersonic flight regimes. For this workshop we calculated the testcases 6.1.1, 6.1.3, 6.2.1 and 6.2.3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. D. Anderson, Modem Compressible Flow, McGraw-Hill (1982)Google Scholar
  2. [2]
    C. F. Hansen, Approximation for the Thermodynamics and Transport Properties of High-Temperature Air, NASA TR-50 (1959)Google Scholar
  3. [3]
    M. Fey, H. Jarausch, R. Jeltsch, P. Karmann, On the Interaction of Euler and ODE Solver when Computing Reactive Gas Flow, Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, J. E. Flaherty, P. J. Paslow, M. S. Shephard, J. D. Vasilakis, eds., SIAM, (1988)Google Scholar
  4. [4]
    H. YEE, Upwind and Symmetric Shock-Capturing Schemes, NASA-TM 89464 (1987)Google Scholar
  5. [5]
    B.van Leer, Flux-Vector Splitting for the Euler Equations, Lecture Notes in Physics, vol. 170, (1982), pp. 501–512CrossRefGoogle Scholar
  6. [6]
    W. K. Anderson, J. L. Thomas, A Comparison of Finite Volume Flux Vector Splittings for the Euler Equations, AIAA-85-0122, (1985)Google Scholar
  7. [7]
    J. F. Thompson, Z. U. A. Warsi, C. W. Mastin, Numerical Grid Generation, North Holland (1985)MATHGoogle Scholar
  8. [8]
    V. Montag, Analyse verschiedener Lösungsalgorithmen für Differentialglei-chungssysteme chemischer Reaktionen, Diplomarbeit, RWTH Aachen (1990)Google Scholar
  9. [9]
    P. Kaps, G. Wanner, A Study of Rosenbrock-Type Methods of High Order, Numer. Math. 38 (1981), pp. 279–298CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    C. Park, On Convergence of Computation of Chemically Reacting Flows, AIAA-Paper 085 - 0247 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Fey
    • 1
  • R. Jeltsch
    • 1
  • P. Karmann
    • 1
  1. 1.Institute for Applied MathematicsETH-ZentrumZürichSwitzerland

Personalised recommendations