Skip to main content

Contribution to Problem 3 using a Galerkin Least Square Finite Element Method

  • Conference paper

Abstract

A Navier Stokes solver based on a Galerkin - Least Square formulation is used; entropy variables are introduced to ensure dimensional consistency and satisfy the stability inequality as the second law of Thermodynamics. Convergence to the steady state solution is obtained with an implicit technique using a preconditioned GMRES linear solver. This method has been developped in close cooperation with F. Chalot, T.J.R Hughes, Z. Johan and F. Shakib at Stanford University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Mock, “Systems of conservation laws of mixed type”, Journal of Differential Equations, 37, 70–88 (1980).

    Google Scholar 

  2. J.A. Harten, “On the symmetric form of systems of conservation laws with entropy”, Journal of Computational Physics 49, 151–164 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. E.A. Tadmor, Skew selfadjoint forms for systems of conservation laws, J. Math. Anal. Appl. 103, 428–442 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  4. T.J.R Hughes, L.P. Franca and M. Mallet, “A New Finite Element Formulation For Computational Fluid Dynamics: I Symmetric Forms of the Compressible Euler and Navier Stokes Equations and the Second Law of Thermodynamics”. Computer Methods in Applied Mechanics and Engineering, 54, 223–234 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. F. Chalot, T.J.R. Hughes, and F. Shakib, “Symmetrization of conservation laws with entropy for high temperature hypersonic computations”. Submitted to Computing Systems in Engineering.

    Google Scholar 

  6. T.J.R Hughes, F. Shakib, “Computational Aerodynamics and the Finite Element Method”. AIAA Aerospace Sciences Meeting, Paper no 88-0031, Reno, Nevada, January 11–15, 1988.

    Google Scholar 

  7. Finite Elements in Fluids, Vol. VI, Wiley. London, pp 251–261 (1986).

    Google Scholar 

  8. T.J.R Hughes, L.P. Franca and M. Mallet, “A New Finite Element Formulation For Computational Fluid Dynamics: VI convergence analysis of the generalized SUPG formulation for linear time dependent multidimensional advective diffusive systems”. Computer Methods in Applied Mechanics and Engineering, 63, 97–112 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. T.J.R Hughes, M. Mallet and A. Mizukami, “A New Finite Element Formulation For Computational Fluid Dynamics: II beyond SUPG”. Computer Methods in Applied Mechanics and Engineering, 54, 341–355 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A.C. Galeao and E.G. Dutra do Carmo, “A Consistent Approximate Up-wind Petrov Galerkin method for Convection Dominated Problems”, Computer Methods in Applied Mechanics and Engineering, Vol. 68, (1988).

    Google Scholar 

  11. A. Szepessy, “Convergence of Shock Capturing Streamline Diffusion Finite Element Methods for a Scalar Conservation Law in two Space Dimensions” Technical report 1988–07, Mathematics Department, Chalmers University of Technology, Goeteborg, Sweden 1988.

    Google Scholar 

  12. F. Shakib, “Finite Element Analysis of the Compressible Euler and Navier- Stokes Equations”. Ph.D. Thesis, Stanford University, (1988).

    Google Scholar 

  13. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (1986), pp. 856–89.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Mallet, J. Periaux and B. Stouffiet, “Convergence acceleration of finite element methods for the solution of the Euler and Navier Stokes equations of compressible flow”. Proceedings of the 7TH GAMM Conference on Numerical Methods in Fluid Dynamics. Vieweg, Vol. 20, pp. 199–210.

    Google Scholar 

  15. M.O. Bristeau, L. Dutto, R. Glowinski, J. Periaux, G. Rogé: “Compressible viscous flow calculation using compatible finite element approximations”. 7th Int. Conf. on Finite Element Methods in Flow Problems, Huntsville ALA, (1989).

    Google Scholar 

  16. A. Dervieux, L. Fezoui, H. Steve, J. Periaux, B. Stoufflet: “Low Storage Implicit Upwind FEM scheme for the Euler Equation”, 11th Int. Conf. on Numerical Methods in Fluid Dynamics. Williamsburg, July (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mallet, M., Mantel, B., Périaux, J., Stoufflet, B. (1991). Contribution to Problem 3 using a Galerkin Least Square Finite Element Method. In: Désidéri, JA., Glowinski, R., Périaux, J. (eds) Hypersonic Flows for Reentry Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76527-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76527-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76529-2

  • Online ISBN: 978-3-642-76527-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics