Experiments on Shock-Wave/Boundary-Layer Interactions Produced by Two-Dimensional Ramps and Three-Dimensional Obstacles

  • J. Delery
  • M.-C. Coet


Experiments on shock-wave/boundary-layer interactions have been executed on a two-dimensional ramp at Mach numbers 10 and 5 and on a three-dimensional obstacle at Mach number 10. Reynolds number effect has been examined for interactions at Mach 5. In order to reproduce the ratio of the wall temperature to the recovery temperature of the real flight the model could be cooled by circulation of liquid nitrogen. The flow produced have been investigated by means of schlieren photographs, surface flow visualizations, thermosensitive painting, surface heat transfer and surface pressure measurements.


Heat Transfer Mach Number Wall Temperature Wall Heat Transfer Surface Pressure Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



surface pressure coefficient (defined in the text).


distance between the plate leading edge and the ramp or obstacle origin.


Mach number.


surface static pressure


stagnation pressure.


free stream flow unit Reynolds number.


Reynolds number computed with free stream conditions and L.


Stanton number.


recovery temperature.


wall temperature.


stagnation temperature.



X, Y

coordinate system defined in Fig. 15.


ramp or wedge angle.


obstacle sweep angle.



designates free stream conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Morzenski, L. Moyens dessais et de mesures des souffleries à rafales R2 and R3 de Chalais-Meudon. Note Technique ONERA Nw 97/1865AN (1986)Google Scholar
  2. [2]
    Consigny, H., Mentre, V. and Betremieux, A. Méthodes de mesure de flux de convection dans les souffleries R2 et R3 de Chalais-Meudon. Mise en oeuvre actuelle et développements envisagesbles. 25ème Colloque d’Aérodynamique Appliquée de l’AAAF, 26–28 October,1987, Poitiers (France)Google Scholar
  3. [3]
    Ponteziere, J. and Betremieux, A. Méthodes de mesure des flux thermiques pariétaux par peinture thermosensible. ONERA TP N° 470 (1967)Google Scholar
  4. [4]
    Ginoux, J. On some properties of reattaching laminar and transitional high speed flows. VKI TN N° 53 (1969)Google Scholar
  5. [5]
    Coet, M.-C. Etude expérimentale de l’interaction onde de choc-couche limite en écoulement hypersonique bidimensionnel aux nombres de Mach de 5 et 10. ONERA RT N° 7/4362AY (1989)Google Scholar
  6. [6]
    Curle, N. The effect of heat-transfer on laminar boundary-ayer separation in supersonic flow. Aero. Quarterly, Vol. 12 (1961)Google Scholar
  7. [7]
    Delery, J. and Marvin, J. G. Shock-wave/bondary-layer interaction. AGAR Dograph N° 280 (1986)Google Scholar
  8. [8]
    Hankey, W. L. Jr. and Holden, M. S. Two-dimensional shock-wave boundary-layer interactions in high speed flows. AGAR Dograph N° 203 (1975)Google Scholar
  9. [9]
    Edney, B. Anomalous heat-transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. FFA Report N° 115 (1968)Google Scholar
  10. [10]
    Delery, J. Shock-wave/turbulent boundary-layer interaction and its control. Progress in Aerospace Sciences, Vol. 22, pp. 209–280 (1985)CrossRefADSGoogle Scholar
  11. [11]
    Chapman, D.R., Kuehn, D. M. and Larson, H. K. Investigation of separated flow in supersonic and subsonic streams with emphasis on the effects of transition. NACA TN 3869 (1957)Google Scholar
  12. [12]
    Frishett, J. E. Incipient separation of a supersonic turbulent boundary-layer including effects of heat-transfer. Ph. D. Dissertation, University of California, Los Angeles (1971)Google Scholar
  13. [13]
    Holden, M. S. Shock-wave/turbulent boundary-layer in hypersonic flow. AIAA Paper n° 72–74 (1972)Google Scholar
  14. [14]
    Sedney, R. and Kitchens, C. W. Jr. Separation ahead of protuberances in supersonic turbulent boundary-layers. AIAA Journal, Vol. 15, N84, pp. 546–552 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Delery
    • 1
  • M.-C. Coet
    • 1
  1. 1.Office National d’Etudes et de Recherches Aérospatiales (ONERA)ChatillonFrance

Personalised recommendations