Skip to main content

Bacterial Translocation in a Baboon Model of Hypovolemic-Traumatic Shock

  • Conference paper

Abstract

Bacterial translocation secondary to gut damage caused by traumatic shock is a source of posttraumatic sepsis. In several series, only one third of multiorgan failure patients with clinical manifestations of sepsis had an identifiable focus of infection (Goris 1985). The majority of ICU patients demonstrate the picture of clinical sepsis without a focus. In these patients, the gut frequently plays an important part as a shock organ involved in the subsequent development of sepsis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel FL, Waldhausen JA, Seikurt EE (1965) Splanchnic blood flow in the monkey during hemorrhagic shock. Am J Physiol 208: 265–269

    PubMed  CAS  Google Scholar 

  • Ayala A, Perrin MM, Wagner MA, Chaudry IH (1990) Enhanced susceptibility to sepsis after simple hemorrhage. Arch Surg 125: 70–75

    Article  PubMed  CAS  Google Scholar 

  • Banks RO, Gallavan RH Jr, Zinner MJ, Bulkley GB, Harper SL, Granger DN, Jacobson ED (1985) Vasoactive agents in control of the mesenteric circulation. Fed Proc 44: 2743–2749

    PubMed  CAS  Google Scholar 

  • Berg RD, Wommack E, Deitch EA (1988) Immunosuppression and intestinal bacterial overgrowth synergistically promote bacterial translocation. Arch Surg 123: 1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Bond RF, Green HD (1983) Peripheral circulation. In: Altura BM, Lefer AM, Schumer W (eds) Handbook of shock and trauma, Vol 1. Raven Press, New York, p 29–49

    Google Scholar 

  • Bulkley GB, Kvietys PR, Perry MA, Granger DN (1983) Effects of cardiac tamponade on colonic hemodynamics and oxygen uptake. Am J Physiol 244: G604–G612

    PubMed  CAS  Google Scholar 

  • Crowell JW, Smith EE (1964) Oxygen deficit and irreversible hemorrhagic shock. Am J Physiol 206: 313–316

    PubMed  CAS  Google Scholar 

  • Deitch EA, Winterton J, Berg R (1987) The gut as a portal of entry for bacteremia. Ann Surg 205: 681–692

    Article  PubMed  CAS  Google Scholar 

  • Fiddian Green RG (1984) A sensitive and specific diagnostic test for intestinal ischemia using Silastic R tonometers. Eur Surg Res 16: 32

    Google Scholar 

  • Fiddian-Green RG (1988) Splanchnic ischaemia and multiple organ failure in the critically ill. Ann Royal Coll Surgeons Engl 70: 128–134

    CAS  Google Scholar 

  • Fiddian-Green R (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (ed) Splanchnic ischemia and multiple organ failure. Edward Arnold, London Melbourne Auckland, p 349–363

    Google Scholar 

  • Fine J, Caridis DT, Cuevas P, Ishiyama M, Reinhold R (1972) Therapeutic implications of new developments in the study of refractory nonseptic shock. In: Forscher BK, Lillehei RC, Stubbs SS (eds) Shock in low- and high-flow states. Excerpta Medica, Amsterdam, p 1–7

    Google Scholar 

  • Fine J, Palmerio C, Ruteburg S (1968) New developments in therapy of refractory traumatic shock. Arch Surg 96: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Fine J, Ruteburg SH, Schweinburg FB (1959) The role of the RES in hemorrhagic shock. J Exp Med 110: 547–551

    Article  PubMed  CAS  Google Scholar 

  • Fink MP, Cohn SM, Lee PC, Rothschild HR, Deniz YF, Wang H, Fiddian-Green RG (1989a) Effect of lipopolysaccharide on intestinal intramucosal hydrogen ion concentration in pigs: evidence of gut ischemia in a normodynamic model of septic shock. Crit Care Med 17: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Fink MP, Rothschild HR, Deniz YF, Wang H, Lee PC, Cohn SM (1989b) Systemic and mesenteric 02 metabolism in endotoxic pigs: effect of ibuprofen and meclofenamate. J Appl Physiol 67: 1950–1957

    PubMed  CAS  Google Scholar 

  • Goris RJ, Boekhorst PA, Nuytinck KS, Gimbrere JSF (1985) Multiple organ failure: generalized autodestructive inflammation. Arch Surg 120: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Green HD, Bond RF, Rapela CE, Schmid HE, Manley E, Farrar DJ (1980) Competition between intrinsic and extrinsic controls of resistance vessels of major vascular beds during hemorrhagic hypotension and shock. In: Lefer AM, Saba TM, Mela LM (eds) Advances in shock research. Alan R Liss, New York, p 77–104

    Google Scholar 

  • Grisham MB, Granger DN (1988) Neutrophil mediated mucosal injury. Role of reactive oxygen metabolites. Digest Dis Sci Suppl, 33: 6–15

    Article  Google Scholar 

  • Grum CM, Fiddian-Green RG, Pittenger GL, Grant BJB, Rothman ED, Dantzker DR (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56: 1065–1069

    PubMed  CAS  Google Scholar 

  • Haglund U (1973) Vascular reactions in the small intestine of the cat during hemorrhage. Acta Physiol Scand 89: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Abe T, Ahren C, Braide I, Lundgren O (1976) The intestinal mucosal lesions in shock: I. Studies on the pathogenesis. Eur Surg Res 8: 43 5–447

    Google Scholar 

  • Haglund U, Jodal M, Lundgren O (1984) The small bowel in arterial hypotension and shock. In: Shepard AP, Granger DN (eds) Physiology of the intestinal circulation. Raven Press, New York, p 305–319

    Google Scholar 

  • Haglund U, Lundgren O (1972) Reactions within consecutive vascular sections of the small intestine of the cat during prolonged hypotension. Acta Physiol Scand 84: 151–163

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Lundgren O (1977) The significance of sympathetic nervous activity for the development of the intestinal mucosal lesions in shock. Acta Chir Scand 143: 149–143

    Google Scholar 

  • Haglund U, Lundgren O (1978) Intestinal ischemia and shock factors. Fed Proc 37: 2729–2733

    PubMed  CAS  Google Scholar 

  • Herman CM, Kraft AR, Smith KR, Artnak EJ, Chisholm FC, Dickson LG, McKee AE Jr, Homer LD, Levin J (1974) The relationship of circulating endogenous endotoxin to hemorrhagic shock in the baboon. Ann Surg 179: 910–916

    Article  PubMed  CAS  Google Scholar 

  • Herman CM, McKee AE, Schilling PW, Dickson LG, Hörwitz DL, Coran AG, Cryer PE, Kopriva CJ (1972) The baboon as a subhuman primate shock model. In: Forscher BK, Lillehei RC, Stubbs SS (eds) Shock in low- and high-flow states. Excerpta Medica, Amsterdam, p 42–48

    Google Scholar 

  • Kelly CA, Gleiser CA (1986) Selected coagulation reference values for adult and juvenile baboons. Lab Anim Sci 36: 173–175

    PubMed  CAS  Google Scholar 

  • Kvietys PR, Granger DN (1982) Relation between intestinal blood flow and oxygen uptake. Am J Physiol 242: G202–G208

    PubMed  CAS  Google Scholar 

  • Loegering DJ (1986) Kupffer cell complement receptor clearance function and host defense. Circ Shock 20: 321–333

    PubMed  CAS  Google Scholar 

  • Lundgren O, Svanvik J (1973) Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol Scand 88: 551–563

    Article  PubMed  CAS  Google Scholar 

  • MacCannell KL, Hamilton PL, Lederis K, Newton CA, Rivier J (1984) Corticotropin releasing factor-like peptides produce selective dilatation of the dog mesenteric circulation. Gastroenterology 87: 94–102

    PubMed  CAS  Google Scholar 

  • MacCannell KL, Newton CA (1985) Use of selective mesenteric dilator peptides to examine the role of the intestine in experimental hemorrhagic shock. Circ Shock 17: 195–203

    PubMed  CAS  Google Scholar 

  • Marshall J, Sweeney D (1990) Microbial infection and the septic response in critical surgical illness. Arch Surg 125: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Meakins JL, Marshall JC (1986) Multi-organ-failure syndrome. The gastrointestinal tract: the “motor” of MOF. Arch Surg 121: 196–208

    Article  PubMed  Google Scholar 

  • Mehmel HC (1967) Schock durch gesteuerte Hypoxämie, Säure-Basen-Haushalt und Blutgasanalyse. Dissertation, Heidelberg, p 37 and 55

    Google Scholar 

  • Mehmel HC (1987) Herzfunktion und Schock. In: Kilian J, Meßmer K, Ahnefeld FW (eds) Schock. Klinische Anästhesiologie und Intensivtherapie, Vol 33. Springer Verlag, Berlin Heidelberg New York, p 152–157

    Google Scholar 

  • Newald J, Davis J, Schlag G (1989) Closed loop control of pentobarbital anesthesia in baboons. Circ Shock 27: 312

    Google Scholar 

  • Parks DA, Granger DN (1983) Ischemia-induced vascular changes. Role of xanthine oxidase and hydroxyl radicals. Am J Physiol 245: G285–G289

    PubMed  CAS  Google Scholar 

  • Parks DA, Granger DN (1984) Effects of catalase on ischemia-induced vascular permeability changes in the small intestine. Gastroenterology 84: 1207–1211

    Google Scholar 

  • Parks DA, Granger DN (1986) Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol 250: G749–G753

    PubMed  CAS  Google Scholar 

  • Pretorius JP, Schlag G, Redl H, Botha WS, Goosen DJ, Bosman H, Eeden AF van (1987) The “lung in shock” as a result of hypovolemictraumatic shock in baboons. J Trauma 27: 1344–1353

    Article  PubMed  CAS  Google Scholar 

  • Rush BF Jr, Redan JA, Flanagan JJ Jr, Heneghan JB, Hsieh J, Murphy TF, Smith S, Machiedo GW (1989) Does the bacteremia observed in hemorrhagic shock have clinical significance? A study in germfree animals. Ann Surg 210: 342–347

    Article  PubMed  Google Scholar 

  • Schlag G, Redl H (1989) Wandel im Sepsisverständnis der klinischen Medizin. Dtsch med Wschr 114: 475–478

    PubMed  CAS  Google Scholar 

  • Schottmüller H (1914) Wesen und Behandlung der Sepsis. Verh Dtsch Ges Inn Med 31: 257–261

    Google Scholar 

  • Siegel JH, Vary TC (1987) Sepsis, abdominal metabolic control, and the multiple organ failure syndrome. In: Siegel JH, Vary TC (eds) Trauma emergency, surgery and critical care. Churchill Livingstone, New York, p 441–501

    Google Scholar 

  • Simon GL, Gekfand JA, Connolly RA, O’Donnell TF Jr, Gorbach SL (1985) Experimental bacteroides fragilis bacteremia in a primate model: evidence that bacteroides fragilis does not promote the septic shock syndrome. J Trauma 25: 1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Sjövall H, Redfors S, Biber B, Martner J, Winsö O (1984) Evidence for cardiac volume-receptor regulation of feline jejunal blood flow and fluid transport. Am J Physiol 246: G401–G410

    PubMed  Google Scholar 

  • Wells CL (1988) Does the gut protect or injure? Expert commentary. In: Cerra FB (ed) Perspectives in critical care, Vol 1. Quality Medical Publishing Inc, St Louis Missouri, p 25–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Schlag, G., Redl, H., Dinges, H.P., Davies, J., Radmore, K. (1991). Bacterial Translocation in a Baboon Model of Hypovolemic-Traumatic Shock. In: Schlag, G., Redl, H., Siegel, J.H., Traber, D.L. (eds) Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76511-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76511-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53831-8

  • Online ISBN: 978-3-642-76511-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics