Trauma and Sepsis Induced Activation of Granulocytes, Monocytes/Macrophages and Endothelial Cells in Primates

  • H. Redl
  • G. Schlag
  • H. P. Dinges
  • S. Bahrami
  • W. A. Buurman
  • U. Schade
  • M. Ceska
Conference paper


In posttraumatic organ failure we distinguish two different phases -early and late organ failure —, which by definition are caused by non-bacterial (early) and bacterial products (late) induced generalized inflammation. Organ failure is the final result of the action of inflammatory mediators, which cause a permeability increase as well as cellular edema.


Tumor Necrosis Factor Tumor Necrosis Factor Level Baboon Model Granulocyte Elastase Granulocyte Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarden LA, deGroot ER, Schaap OL, Landsdrop PM (1987) Production of hybridoma growth factor by human monocytes. Eur J Immunol 7: 1411–1414CrossRefGoogle Scholar
  2. Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil activating peptide-1/interleukin-8 a novel cytokine that activates neutrophils. J Clin Invest 84: 1045–1049PubMedCrossRefGoogle Scholar
  3. Besemer J, Hujber A, Kuhn B (1989) Specific binding internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes. J Biol Chem 264: 17409–17415PubMedGoogle Scholar
  4. Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor as two sides of the same biological coin. Nture 320: 584–588CrossRefGoogle Scholar
  5. Blanchard DK, Djeu JY, Klein TW, Friedman H, Stewart WEH (1986) Interferon-gamma induction by lipopolysaccharide: dependence on interleukin 2 and macrophages. J Immunol 136: 963–970PubMedGoogle Scholar
  6. Ceska M, Effenberger F, Peichl P, Pursch E (1989) Purification and characterization of monoclonal and polyclonal antibodies to neutrophil activation peptide (NAP-1). The development of highly sensitive ELISA-methods for the determination of NAP-1 and anti-NAP-1 antibodies. Posterpresentation 2nd International Workshop on Cytokines, Hilton Head, South Carolina, USA, December 1989.Google Scholar
  7. Cooper JA, Neumann PH, Wright SD, Malik AB (1989) Pulmonary vascular sequestration of neutrophil in edotoxemia: role of CD18 leukocyte surface glycoprotein. Am Thorac Soc — AbstractGoogle Scholar
  8. Dinarollo CA (1984) Interleukin 1 and the pathogenesis of the acute phase response. N Engl J Med 311: 1413–1418CrossRefGoogle Scholar
  9. Dreher M, Gunzer G, Helger R, Lang H (1989) An automated homogeneous enzyme immunoassay for human PMN elastase. In: Schlag G, Redl H (eds) “Progress in Clinical and Biological Research, Second Vienna Shock Forum, vol 308, Alan R Liss Inc, New York, p 707Google Scholar
  10. Duswald KH, Jochum M, Schramm W, Fritz H (1985) Released granulocytic elastase: an indicator of pathobiochemical alterations in septicemie after abdominal surgery. Surgery 98: 892–899PubMedGoogle Scholar
  11. Fong Y, Tracey KJ, Moldawer LL, Hesse DG, Manogue KB, Kenney JS, Lee AT, Kuo GC, Allison AC, Lowry SF, Cerami A (1989) Antibodies to cachectin/tumor necrosis factor reduce interleukin-1 beta and interleukin-6 appearance during lethal bacteremia. J Exp Med 170: 1627–1633PubMedCrossRefGoogle Scholar
  12. Forsyth KD, Simpson AC, Fitzpatrick MM, Barratt TM, Levisnkiy RJ (1989) Neutrophil mediated endothelial injury in haemolytic uraemic syndrome. Lancet II: 411–416CrossRefGoogle Scholar
  13. Fridman EP, Popova VN (1988) Species of the genus papio as subjects of biomedical research. II. Quantitative characteristics of contemporary use of baboon species in medical and biological investigations. J Med Primatol 17: 309–318PubMedGoogle Scholar
  14. Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667–8671PubMedCrossRefGoogle Scholar
  15. Harlan JM (1987) Consequences of leukocytevessel wall interactions in inflammatory and immune reactions. Semin Thromb Hemost 13: 434–441PubMedCrossRefGoogle Scholar
  16. Harlan JM, Killen PD, Snecal F, Schwartz BR, Yee EK, Taylor RF, Beatty PG, Price T, Ochs HD (1985) The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178PubMedGoogle Scholar
  17. Herman CM, McKee AE, Schillings PW, Dickson LG, Horwitz DL, Coran AG, Cryer PE, Kopriva CJ (1972) The baboon as a subhuman primate shock model. In Forscher BK, Lillehei RC, Stubbs SS (eds) Shock in low-and high flow states, Proceedings of a symposium at brook lodge, Augusta, Michigan 1971, Excerpta Medica, Amsterdam, p 42Google Scholar
  18. Hesse DG, Traces KJ, Fong Y, Manogue KR, Palladino MAjr, Cerami A, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166: 147–153PubMedGoogle Scholar
  19. Kownatzki E, Kapp A, Uhrich S (1986) Novel neutrophil chemotatic factor derived from human peripheral blood mononuclear leucocytes. Clin Exp Immunol 64: 214–222PubMedGoogle Scholar
  20. Lang, Jochum M, Fritz H, Redl H (1989) Validity of the elastase assay in intensive care medicine. In Schlag G, Redl H (eds) Progress in clinical and biological research, second Vienna shock forum, vol. 308, Alan R Liss Inc, New York, p 701Google Scholar
  21. Larrick JW, Graham D, Toy K, Lin LS, Senyk G, Fendly BM (1987) Recombinant tumor necrosis factor causes activation of human granulocytes. Blood 69: 640–644PubMedGoogle Scholar
  22. Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K (1989) Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin 1 or tumor necrosis factor. Immunology 68: 31–36PubMedGoogle Scholar
  23. Leeuwenberg FM, Jeunhomme TMAA, Buurman WA (1989) Induction of an activation antigen on human endothelial cells in vitro. Eur J Immunol 19: 715–720PubMedCrossRefGoogle Scholar
  24. Marinkovic S, Jahreis GP, Wong GG, Baumann H (1989) IL-6 modulates the synthesis of a specific set of acute phase plasma proteins in vivo. J Immunol 142: 808–812PubMedGoogle Scholar
  25. Neumann S, Gunzer G, Hennrich N, Lang H (1984) “PMN elastase assay”: enzyme immunoassay for human polymorphonuclear elastase complexed with alpha-1 proteinase inhibitor. J Clin Chem Clin Biochem 22: 693–697PubMedGoogle Scholar
  26. Nuytinck JKS; Goris RJA, Redl H, Schlag G, van Munster PJJ (1986) Posttraumatic complications and inflammatory mediators. Arch Surg 121: 886–890PubMedCrossRefGoogle Scholar
  27. Oppenheim JJ, Matsushima K, Yoshimura T, Leonard EJ, Neta R (1989) Relationship between interleukin (IL-1), tumor necrosis factor (TNF) and a neutrophil attracting peptide (NAP-1). Agent Action 26:134–140CrossRefGoogle Scholar
  28. Pacher R, Redl H, Frass M, Petzl DH, Schuster E, Woloszczuk W (1989) Relationship between neopterin and granulocyte elastase plasma levels and the severity of multiple organ failure. Crit Care Med 17: 221–226PubMedCrossRefGoogle Scholar
  29. Pober JS (1988) Cytokine-mediated activation of vascular endothelium. Phyisology and pathology. Am J Pathol 133: 426–431PubMedGoogle Scholar
  30. Pober JS, Bevilacqua MP, D.L. Mendrick DL, Lapierre LA, Fiers W, Gimbrone MAjr (1986a) Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136: 1680–1687PubMedGoogle Scholar
  31. Pober JS, Gimbrone MAjr, Lappierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA (1986b) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 137: 1893–1896PubMedGoogle Scholar
  32. Pretorius JP, Schlag G, Redl H, Botha WS, Goosen DJ, Bosman H, Eeden van AF (1987) The ‘lung in shock’ as a result of hypovolemic-traumatic shock in baboons. J Trauma 27: 1344–1352PubMedCrossRefGoogle Scholar
  33. Redl H, Schlag G, Dinges HP, Buurman W, Rothlein R, Pober J, Cotran R (1990a) Endothelial activation after polytrauma and sepsis in the baboon. Circ Shock 31: 79Google Scholar
  34. Redl H, Schlag G, Dinges HP, Buurman W, van der Linden CJ, Pober J, Cotran R (1990) Endothelial cell activations in septic but not traumatic shock whereas neutrophils are activated in both settings. Am J Pathol: submittedGoogle Scholar
  35. Redl H, Schlag G, Hammerschmidt DE (1984) Quantitative assessment of leukostasis in experimental hypovolemic-traumatic shock. Acta Chir Scand 150: 113–117PubMedGoogle Scholar
  36. Redl H, Schlag G, Lamche H, with technical assistance of Vogl C, Paul E, Schießer A, Wilfing C, Thurnher M and the Biomedical Engineering Group (1990b) TNF- and LPS-induced changes of lung vascular permeability: studies in unanesthetised sheep. Circ Shock 31: 183–192PubMedGoogle Scholar
  37. Redl H, Schlag G, Paul E, Davies J (1989) Monocyte/ macrophage activation with cytokine release after polytrauma and sepsis in the baboon. Circ Shock 27: 308Google Scholar
  38. Schlag G, Redl H (1985a) Morphology of the human lung after traumatic injury. In Zapol EM, Falke KJ (eds) Acute respiratory failure. Marcel Dekker Inc, New York, Basel, p 161Google Scholar
  39. Schlag G, Redl H (1985b) Morphology of the microvascular system in shock: Lung, liver and skeletal muscle. Crit Care Med 13: 1045–1049PubMedGoogle Scholar
  40. Schlag G, Redl H (1989a) Lung in shock — posttraumatic lung failure (organ failure) — MOFS. In Schlag G, Redl H (eds) Progress in clinical and biological research, second Vienna shock forum, Vol 308. Alan R Liss Inc, New York, p 3Google Scholar
  41. Schlag G, Redl H, Hallström S, Radmore K, Davies J (1990a) Hyperdynamic sepsis in baboons — I. Aspects of hemodynamics and oxygen transport. Circ Shock in pressGoogle Scholar
  42. Schlag G, Redl H, Dinges HP, Davies J, Radmore K (1990b) Bacterial translocation in a baboon model of hypovolemic-traumatic shock. In: Schlag G, Redl H, Siegel JH (eds) Shock, Sepsis and Organ Failure, Second Wiggers Bernard Conference, Springer-Verlag, Berlin-Heidelberg, in pressCrossRefGoogle Scholar
  43. Schlag G, Redl H, Radmore K, Davies J (1989b) Bacterial translocation in a baboon model of hypovolemic-traumatic shock. Circ Shock 27: 321Google Scholar
  44. Schröder JM, Mrowietz U, Morita E, Christofers E (1987) Purification and partial biochemical characterization of a human monocyte derived neutrophil activating peptide that lacks interleukin-1 activity. I Immunol 139: 3474–3479Google Scholar
  45. Shalaby MR, Waage A, Aarden L, Espevik T (1989) Endotoxin, tumor necrosis factor-alpha and interleukin 1 induce interleukin 6 production in vivo. Clin Immunol Immunopathol 53: 488–492PubMedCrossRefGoogle Scholar
  46. Strieter RM, Phan SH, Showell HJ, Remick DG, Lynch JP, Genord M, Raiford C, Eskandari M, Marks RM, Kunkel SL (1989) Monokine-induced neutrophil chemotactic factor gene expression in human fibroblasts. J Biol Chem 264: 10621–10626PubMedGoogle Scholar
  47. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A (1987) Anti cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 33: 662–664CrossRefGoogle Scholar
  48. Vedder NB, Fouty BW, Winn RK, Harlan JM, Rice CL (1989) Role of neutrophils in generalized reperfusion injury associated with resuscitation from shock. Surgery 106: 509–516PubMedGoogle Scholar
  49. Waage A, Brandtzaeg P, Halstensen A, Kierulf P., Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin-6, interleukin-1, and fatal outcome. J Exp Med 169: 333–338PubMedCrossRefGoogle Scholar
  50. Walz A, Peveri P, Aschauer H, Baggiolini M (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149: 755–762PubMedCrossRefGoogle Scholar
  51. Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appela E, Oppenheim JJ, Leonard EJ (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that shars sequence homologty with other host defense cytokines. Proc Natl Acad Sci USA 84: 9233–9237PubMedCrossRefGoogle Scholar
  52. Zabel P, Schönharting MM, Wolter DT, Schade U (1989) Oxpentifylline in endotoxemia. Lancet II: 1474–1477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • H. Redl
    • 1
  • G. Schlag
    • 1
  • H. P. Dinges
    • 1
    • 2
  • S. Bahrami
    • 1
  • W. A. Buurman
    • 1
    • 3
  • U. Schade
    • 1
    • 4
  • M. Ceska
    • 1
    • 5
  1. 1.Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
  2. 2.Institute of PathologyUniversity of GrazAustria
  3. 3.Department of SurgeryUniversity LimburgThe Netherlands
  4. 4.Forschungsinstitut BorstelBorstelGermany
  5. 5.Sandoz ForschungsinstitutViennaAustria

Personalised recommendations