Skip to main content

Hypoxic Damage of the Gut in Shock

  • Conference paper
Book cover Shock, Sepsis, and Organ Failure

Abstract

The intestine has long been considered target organ in shock (Wiggers 1950, Lillehei 1957). One important reason for this is the characteristic, often hemorrhagic, superficial mucosal injury found in the small intestine following even shortperiods of hypotension or ischemia. Microscopically detectable mucosal injury is found after 20 min of total warm intestinal ischemia (Park et al 1990). A series of observations indicate that damage to the villi is regularly found following one or two hours of partial intestinal ischemia, hemorrhagic, or septic shock (see Haglund et al 1984 for a review). The intestinal mucosal injury means break down of the barrier between the luminal content and the body with the possibility of release of various toxic products, including bacteria. The hemodynamic reactions of the intestinal vascular bed in shock and ischemia, as well as other factors considered of pathogenetic importance for the development of the intestinal mucosal injury during shock, will be discussed in the present chapter. In addition, the pathophysiological implications of the intestinal mucosal injury will be discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvidsson D, Rasmussen I, Almqvist P, Niklasson F, Haglund U, Splanchnic oxygen consumption in septic and hemorrhagic shock. Surgery (in press).

    Google Scholar 

  • Bohlen HG (1980) Intestinal tissue P02 and microvascular responses during glucose exponsure. Am J Physiol 238 (Heart Circ Physiol 7): H164–H171.

    PubMed  CAS  Google Scholar 

  • Bailey RW, Bulkley GB, Hamilton SR, Morris JB, Haglund UH (1987 a) Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. Am J Surg 153:108–116.

    Google Scholar 

  • Bailey RW, Bulkley GB, Hamilton SR, Morris JB, Haglund UH, Meilahn JE (1987 b) The fundamental hemodynamic mechanism underlying gastric “stress ulceration” in cardiogenic shock. Ann Surgery 205:597–612.

    Article  CAS  Google Scholar 

  • Bulkley GB, Kvietys PR, Parks DA, Perry MA, Granger DN (1985) Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology 89:852–857.

    PubMed  CAS  Google Scholar 

  • Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple-organ-failure syndrome. Arch Surg 121:196–208.

    Article  PubMed  CAS  Google Scholar 

  • Chiu C-J, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. Arch Surg 101:478–483.

    Article  PubMed  CAS  Google Scholar 

  • Falk A, Myrvold HE, Haglund U (1982) Cardiopulmonary function as related to intestinal mucosal lesions in experimental septic shock. Circ Shock 9:419–432.

    PubMed  CAS  Google Scholar 

  • Falk A, Redfors S, Myrvold H, Haglund U (1985) Small intestinal mucosal lesions in feline septic shock: A study on the pathogenesis. Circ Shock 17:327–337.

    PubMed  CAS  Google Scholar 

  • Fiddian-Green RG, (1989) Studies in splanchnic ischemia and multiple organ failure. In Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. London Edward-Arnold, pp 349–363.

    Google Scholar 

  • Fiddian-Green RG, Amelin PM, Herrmann JB, Arous E, Custler BS, Schiedler M, Wheeler HB, Baker S (1986) Prediction of the development of sigmoid ischemia on the day of aortic operations. Arch Surg 121:654–658.

    Article  PubMed  CAS  Google Scholar 

  • Fiddian-Green RG, Baker, S (1987) Predictive value of the stomach wall pH for complications after cardiac operations: Comparison with other monitoring. Crit Care Med 15:153–156.

    Article  PubMed  CAS  Google Scholar 

  • Fiddian-Green RG, McGough E, Pittenger G, Rothman E (1983) Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology 85:613–626.

    PubMed  CAS  Google Scholar 

  • Fine J (1967) The intestinal circulation in shock. Gastroenterololgy 52:454–458.

    CAS  Google Scholar 

  • Fink MP, Cohn SM, Lee PC, Rothschild HR, Deniz YF, Wang H, Fiddian-Green RG (1989) Effect of lipopolysaccharide on intestinal intramucosal hydrogen concentration in pigs: Evidence of gut ischemia in a normodynamic model of septic shock. Crit Care Med 17:641–646.

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1967) Regional adjustments of intestinal blood flow. Gastroenterology 52:423–432.

    PubMed  CAS  Google Scholar 

  • Fry DE, Pearlstein L, Fulton RL, Polk Jr HC (1980) Multiple system organ failure. Arch Surg 115:136–140.

    Article  PubMed  CAS  Google Scholar 

  • Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury, Am J Physiol 255 (Heart Circ Physiol 24): H1269–H1275.

    PubMed  CAS  Google Scholar 

  • Granger DN, Rutili G, McCord JM (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81:22–29.

    PubMed  CAS  Google Scholar 

  • Haglund U (1983) Shock toxins. In B.M. Altura et al (eds): Handbook of shock and trauma, New York, Raven Press, pp 377–390.

    Google Scholar 

  • Haglund U (1988) The splanchnic organs as the source of toxic mediators in shock. In Bond RF, Adams HR, Claudry IH, (eds) Perspectives in shock research. New York, Alan R. Liss, Inc, pp 135–145.

    Google Scholar 

  • Haglund U, Abe T, Ahrén C, Braide I, Lundgren O (1976a) The intestinal mucosal lesions in shock. I. Studies on the pathogenesis. Eur Surg Res 8:435–447.

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Abe T, Åhrén C, Braide J, Lundgren O (1976b) The small intestinal mucosal lesions in shock. II. The relationship between the mucosal lesions and the cardiovascular derangement following regional shock. Eur Surg Res 8:448–460.

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Bulkley GB, Granger DN (1987) On the pathophysiology of the intestinal ischemic injury. Acta Chir Scand 153:321–324.

    PubMed  CAS  Google Scholar 

  • Haglund U, Jodal M, Lundgren O (1984) The small bowel in arterial hypotension and shock. In Shepherd AP, Granger DN (eds) Physiology of the intestinal circulation. New York, Raven Press, pp 305–319.

    Google Scholar 

  • Haglund U, Lundgren O (1972) The effects of vasoconstrictor fibre stimulation on the consecutive vascular sections of the small intestine of the cat during prolonged regional hypotension. Acta Physiol Scand 85:547–558.

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Lundgren O (1973 a) The effects of vasoconstrictor fibre on consecutive vascular sections of cat small intestine during hemorrhagic hypotension. Acta Physiol Scand 88:95–108.

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Lundgren O (1973 b) Cardiovascular effects of blood borne material released from the cat small intestine during simulated shock conditions. Acta Physiol Scand 89:558–570.

    Article  PubMed  CAS  Google Scholar 

  • Haglund U, Morris JB, Bulkley GB (1988) Haemodynamic characterization of the isolated (denervated) parabiotically perfused rat jejunum. Acta Physiol Scand 132:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Hallström S, Vogl C, Redl H, Schlag G (1990) Net inotropic plasma activity in canine hypovolemic traumatic shock: Low molecular weight plasma franction after prolonged hypotension depresses cardiac muscle performance in vitro. Circ Shock 30:129–144.

    PubMed  Google Scholar 

  • Kuida H (1967) Discussion of “The intestinal circulation in shock”. Gastroentereology 52:458–460.

    CAS  Google Scholar 

  • Lewis DH, Meilander S (1962) Competitive effects of sympathetic control and tissue metabolites on resistance and capacitance vessels and capillary filtration in skeletal muscle. Acta Physiol Scand 56:162–188.

    Article  Google Scholar 

  • Lillehei RC (1957) The intestinal factor in irreversible hemorrhagic shock. Surgery 42:1043–1054.

    PubMed  CAS  Google Scholar 

  • Lundgren O (1967) Studies on blood flow distribution and countercurrent exchange in the small intestine: Acta Physiol Scand, Suppl 303:1–42.

    Article  CAS  Google Scholar 

  • Lundgren O (1989) Physiology of the intestinal circulation. In Marston A, Bulkley GB, Fiddian-Green RG, UH Haglund (eds) Splanchnic ischemia and multiple organ failure. London, Edward Arnold, pp 29–40.

    Google Scholar 

  • Lundgren O, Haglund U (1978) On the chemical nature of blood borne cardiotoxic material released from the feline small bowel in regional shock. Acta Physiol Scand 103:59–70.

    Article  PubMed  CAS  Google Scholar 

  • Lundgren O, Haglund U, Isaksson O, Abe T (1976) Effects on myocardinal contractility of blood-borne material released from the feline small intestine in simulated shock. Circ Res 38:307–315.

    PubMed  CAS  Google Scholar 

  • Lundgren O, Svanvik J (1973) Muscosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol Scand 88: 551–563.

    Article  PubMed  CAS  Google Scholar 

  • McNeill JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopessin and angiotensin. Am J Physiol 219(5):1342–1347.

    PubMed  CAS  Google Scholar 

  • Meakins JL, Marshall JC (1989) The gut as the motor of multiple system organ failure. In A. Marston, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) (1989) Splanchnic ischemia and multiple organ failure. London, Edward Arnold, pp 339–348.

    Google Scholar 

  • Mellander S, Lewis DH (1963) Effect of hemorrhagic shock on the reactivity of resistance and capacitance vessels and on capillary filtration transfer in cat skeletal muscle. Cir Res 8:105–118.

    Google Scholar 

  • Montgomery A, Almqvist P, Arvidsson D, Lindgren S, Haglund U (1990) Early detection of gastrointestinal mucosal ischemia in porcine E. coli sepsis. Acta Chir Scand, (in press).

    Google Scholar 

  • Montgomery A, Hartmann M, Jönsson K, Haglund U (1989) Intramucosal pH measurement with tonometers for detecting gastrointestinal ischemia in porcine hemorrhagic shock. Circ Shock 29:319–327.

    PubMed  CAS  Google Scholar 

  • Morris JB, Bulkley GB, Haglund U, Cadenas E, Sies H (1987) The direct, real-time demonstration of oxygen free radical generation at reperfusion following ischemia in the living intact, rat small intestine. Gastroenterology 92:1541.

    Google Scholar 

  • Nilsson UA, Lundgren O, Haglind E, Bylund-Fellenius AC (1989) Radical production during in vivo intestinal ischemia and reperfusion in the cat. Am J Physiol 257:G409–G414.

    PubMed  CAS  Google Scholar 

  • Park PO, Haglund U, Bulkley GB, Fält K (1990) The sequence of development of intestinal tissue injury following strangulation ischemia and reperfusion. Surgery 107: (in press).

    Google Scholar 

  • Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardinal depressant substance in humans with septic shock. Clin Invest 76:1539–1553.

    Article  CAS  Google Scholar 

  • Porter JM, Sussman MS, Bulkley GB (1989) Splanchnic vasospasm in circulatory shock. In Marston A, Bulkley GB, Fiddian-Green RG, UH Haglund (eds) Splanchnic ischemia and multiple organ failure. London, Edward Arnold, pp 73–88.

    Google Scholar 

  • Ratych RE, Chuknyiska RS, Bulkley GB (1987) The primary localization of free radical generation after anoxia/ reoxygenation in isolated endothelial cells. Surgery 102: 122–131.

    PubMed  CAS  Google Scholar 

  • Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM (1981) Ischemic injury to the cat small intestine: role of superoxide radicals. Gastroenterology 81:22–29.

    Google Scholar 

  • Redfors S, Hallbäck DA, Haglund U, Jodal M, Lundgren O (1984) Blood flow distribution, villous osmolality and fluid and electrocyte transport in the cat small intestine during regional hypotension. Acta Physiol Scand 121:193–209.

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg MH, Muhl E, Sellin D, Younes M, Schildberg FW, Haglund U (1984) Posthypotensive generation of superoxide free radicals — possible role in the pathogenesis of the intestinal mucosal damage. Acta Chir Scand 150:301–309.

    PubMed  CAS  Google Scholar 

  • Wiggers CJ (1950) The Physiology of shock. Common wealth Found, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Haglund, U. (1991). Hypoxic Damage of the Gut in Shock. In: Schlag, G., Redl, H., Siegel, J.H., Traber, D.L. (eds) Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76511-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76511-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53831-8

  • Online ISBN: 978-3-642-76511-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics