The Transitory Complexes Between Photoexcited Rhodopsin and Transducin. Biochemical and Spectroscopic Studies

  • F. Bornancin
  • C. Pfister
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


In the first step of the visual transduction cascade, photoexcited rhodopsin (R*ret) binds to a GDP-carrying transducin (TGDP), allowing the release of the GDP from its site on T. We obtained a R*ret-Te complex (ret for retinal present, e for nucleotide site empty), undissociable almost indefinitely in a medium with physiological ionic strength. In this complex, rhodopsin is totally locked in the Meta-II conformation (R*ret). Incubation in a low ionic strength medium partially dissociates Te (probably a denatured form of transducin). In the presence of GDP, a R*ret-TGDP complex is obtained. TGDP appears to have a high binding affinity to R*ret in physiological ionic conditions. We show that the binding of Te or TGDP on cytoplasmic loops of rhodopsin induces different retroactions on the retinal site in rhodopsin.


Difference Spectrum Nucleotide Site Cytoplasmic Loop Spectral Evolution Sample Cuvette 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, N. and Dupont, Y. (1985) J. Biol. Chem. 260, 4156–4168.PubMedGoogle Scholar
  2. Bennett, N., Michel-Villaz, M. and Kühn, H. (1982) Eur. J. Biochem. 127, 97–103.PubMedCrossRefGoogle Scholar
  3. Bornancin, F., Pfister, C. and Chabre, M. (1989) Eur. J. Biochem. 184, 687–698.PubMedCrossRefGoogle Scholar
  4. Bruckert,F. (1989) Thesis, University of GrenobleGoogle Scholar
  5. Bruckert, F., Vuong, T.M. and Chabre, M. (1988) Eur. Biophys. J. 16, 207–218.PubMedCrossRefGoogle Scholar
  6. Emeis, D., Kühn, H., Reichert, J. and Hofmann, K.P. (1982) FEBS Lett. 143, 29–34.PubMedCrossRefGoogle Scholar
  7. Kahlert, M, König, B. and Hofmann, K.P. (1990) J. Biol. Chem., 265, 18928–18932PubMedGoogle Scholar
  8. König, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A. and Hofmann K.P. (1989) P.N.A.S. 86, 6878–6882.PubMedCrossRefGoogle Scholar
  9. Kühn, H. (1980) Nature 283, 587–589.PubMedCrossRefGoogle Scholar
  10. Kühn, H., Bennett, N., Michel-Villaz, M. and Chabre, M. (1981) P.N.A.S. 78, 6873–6877.PubMedCrossRefGoogle Scholar
  11. Pfister, C., Kühn, H. and Chabre, M. (1983) Eur. J. Biochem. 136, 489–499.PubMedCrossRefGoogle Scholar
  12. Schleicher, A., Kühn, H., and Hofmann, K.P. (1989) Biochemistry 28, 1770–1775.PubMedCrossRefGoogle Scholar
  13. Vuong, T.M., Chabre, M. and Stryer, L. (1984) Nature 311, 659–661.PubMedCrossRefGoogle Scholar
  14. Wald, G. (1968) Nature 219, 800–807.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • F. Bornancin
    • 1
  • C. Pfister
    • 1
  1. 1.Laboratoire de Biophysique Moléculaire et CellulaireCEN-Grenoble, 85XGrenobleFrance

Personalised recommendations