Glycosylation of Dipteran Opsins During Membrane Biogenesis

  • A. Huber
  • R. Paulsen
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


Opsins belong to a superfamily of receptor proteins which are essential components of transmembrane signaling systems. Structural models predict the existence of seven transmembrane segments, interconnected by three cytoplasmic and three extra-cellular loops, as a common motif for this receptor family (Fig.1). Besides these topographical analogies, the receptors share functional features as the coupling of the activated receptor to a G-protein (e.g. transducin) and to regulatory proteins (e.g. arrestin). Within the opsins considerable amino acid homology exists in the cytoplasmic loops. The N- and C-terminal opsin regions, on the other hand, are remarkably divergent. Despite being poorly conserved these regions harbour sites for posttranslational modifications, i.e. serine and threonine residues for multiple phosphorylation near the C-terminus and consensus sequences for N-linked glycosylation near the N-terminus (1, 2, 3).


Lectin Binding Membrane Biogenesis Microvillar Membrane Putative Glycosylation Site Molecular Mass Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kühn, H. (1984). In: Progress in retinal research (Osborn, N. and Chader, J. eds.), pp. 123–156. Pergamon Press, Oxford and New York.Google Scholar
  2. 2.
    Applebury, M.L. and Hargrave, P.A. (1986). Vision Res. 26, 1881–1895.PubMedCrossRefGoogle Scholar
  3. 3.
    Findley, J.B.C. and Pappin, D.J.C. (1986). Biochem. J. 238, 625–642.Google Scholar
  4. 4.
    Kühn, H., and Dreyer, W.J. (1972). FEBS Lett. 20, 1–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilden, U. and Kühn, H. (1982). Proc. Natl. Acad. Sci. U.S.A. 74, 4238–4242.Google Scholar
  6. 6.
    Paulsen, R. and Bentrop, J. (1984). J. Comp. Physiol. A 155, 39–45.Google Scholar
  7. 7.
    Huber, A., Smith, D.P., Zuker, C.S. and Paulsen, R. (1990). J. Biol. Chem. 265, 17906–17910.PubMedGoogle Scholar
  8. 8.
    Schwemer, J. (1984). J. Comp. Physiol. 154, 535–547.CrossRefGoogle Scholar
  9. 9.
    Laemmli, U.K. (1970). Nature 227, 682–685.CrossRefGoogle Scholar
  10. 10.
    Bentrop, J. and Paulsen, R. (1986). Eur. J. Biochem. 161, 61–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Zuker, C.S., Montell, C., Jones, K., Laverty, T. and Rubin, G.M. (1987). J. Neurosci. 7 (5), 1550–1557.PubMedGoogle Scholar
  12. 12.
    George, S.T., Ruoho, A.E. and Malbon, C.C. (1986). J. Biol. Chem. 261, 16559–16564.PubMedGoogle Scholar
  13. 13.
    Fliesler, S.J. and Basinger, S.F. (1985). Proc. Natl. Acad. Sci. U.S.A. 82, 1116–1120.PubMedCrossRefGoogle Scholar
  14. 14.
    Fliesler, S.J., Rayborn, M.E. and Hollyfield, J.G. (1985). J. Cell Biol. 100, 574–587.PubMedCrossRefGoogle Scholar
  15. 15.
    Connel, G.J. and Molday, R.S. (1990). Biochemistry 29, 4691–4698.CrossRefGoogle Scholar
  16. 16.
    Travis, G.H., Brennan, M.B., Danielson, P.E., Kozak, C.A. and Sutcliffe, G.J. (1989). Nature 338, 70–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwemer, J. (1988). In: Yamada Conference XXI: Molecular physiology of retinal proteins (Hara, T. ed.), pp. 299–304. Yamada Science Foundation, Osaka.Google Scholar
  18. 18.
    Hamdorf, K., Schwemer, J. and Paulsen, R. (1989). In: Biological signal processing (Lüttgau, H.C. and Necker, R. eds.), pp. 83–104. Verlag Chemie, Weinheim, FRG.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. Huber
    • 1
  • R. Paulsen
    • 1
  1. 1.Institut für Zoologie IUniversität KarlsruheKarlsruheFed. Rep. of Germany

Personalised recommendations