Advertisement

Mechanisms of β-Adrenergic Receptor Desensitization

  • M. J. Lohse
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

β-Adrenergic receptors mediate the stimulatory effects of catecholamines on adenylyl cyclase. They are members of the large family of cell surface receptors transmitting their signals via G-proteins, which all have a characteristic structure encompassing seven transmembrane alpha-helical domains. These receptors are subject to a multitude of regulatory mechanisms that serve to adapt receptor responsiveness to the level of receptor stimulation. Agonist stimulation of the receptors results in a loss of receptor responsiveness which is called desensitization. Rapid mechanisms of desensitization involve a loss of receptor function by receptor phosphorylation plus binding of a protein inhibiting receptor-G protein interaction. This protein was called β-arrestin, because it is similar to the retinal protein arrestin that has been proposed to inhibit rhodopsin function. Slow mechanisms of desensitization involve a reduction in receptor number, which is due to both enhanced receptor degradation and reduced synthesis.

Keywords

Adenylyl Cyclase Adrenergic Receptor Receptor Number Receptor Desensitization Transmembrane Signalling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benovic J. L., Pike L. J., Cerione R. A., Staniszewski C., Yoshimasa T., Codina J., Caron M. G., Lefkowitz R. J. (1985) Phosphorylation of the mammalian β-adrenergic receptor by cyclic AMP-dependent protein kinase. J. Biol. Chem. 260, 7094–7101.Google Scholar
  2. Benovic J. L., Kühn H., Weyand I., Codina J., Caron M.G., Lefkowitz R. J. (1987) Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: potential role of an analog for the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. USA 84, 8879–8882.Google Scholar
  3. Benovic J. L., Bouvier M., Caron M.G., Lefkowitz R. J. (1988) Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Ann. Rev. Cell Biol. 4, 405–428.Google Scholar
  4. Benovic J. L., DeBlasi A., Stone W. C., Caron M. G., Lefkowitz R. J. (1989) β-Adrenergic receptor kinase: primary structure delineates a multigene familiy. Science 246. 235–240.Google Scholar
  5. Blake A. D., Mumford R. A., Strout H. V., Slater E. G., Strader C. D. (1987) Synthetic segments of the mammalian βAR are preferentially recognized by cAMP-dependent protein kinase and protein kinase C. Biochem. Biophys. Res. Commun. 147. 168–173.Google Scholar
  6. Bouvier M., Collins S., O’Dowd B. F., Campbell P. T., DeBlasi A., Kobilka B. K., MacGregor C., Irons G. P., Caron M.G., Lefkowitz R. J. (1989) Two distinct pathways for cAMP-mediated down-regulation of the β2-adrenergic receptor. J. Biol. Chem. 264. 16786–16792.Google Scholar
  7. Cheung A. H., Sigal I. S., Dixon R. A. F., Strader S. D. (1989) Agonist-promoted sequestration of the β2-adrenergic receptors requires regions involved in functional coupling with Gs. Mol. Pharmacol. 34, 132–138.Google Scholar
  8. Chuang D. M., Dillon-Carter O., Spain J. N., Laskowski M. W., Roth B. L., Coscia C. J. (1986) Detection and characterization of β-adrenergic receptors and adenylate cyclase in coated vesicles isolated from bovine brain. J. Neurosci. 6, 2578–2584.Google Scholar
  9. Clark R. B., Friedman J., Dixon R. A. F., Strader C. D. (1989) Identification of a specific site required for rapid heterologous desensitization of the β-adrenergic receptor by cAMP-dependent protein kinase. Mol. Pharmacol. 36, 343–348.Google Scholar
  10. Clark R. B., Kunkel M. W., Friedman J., Goka T. J., Johnson J. A. (1988) Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma cells. Proc. Natl. Acad. Sci. USA 85, 1442–1446.Google Scholar
  11. Collins S., Bouvier M., Bolanowski M. A., Caron M. G., Lefkowitz R. J. (1989) cAMP stimulates transcription of the β2-adrenergic receptor gene in response to short-term agonist exposure. Proc. Natl. Acad. Sci. USA 86, 4853–4857.Google Scholar
  12. Dohlman H. G., Caron M.G., Lefkowitz R. J. (1987) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26, 2657–2664.Google Scholar
  13. Gilman A.G. (1987) G-proteins: Transducers of receptor-generated signals. Ann. Rev. Biochem. 56, 615–649.Google Scholar
  14. Green D. A., Clark R. B. (1981) Adenylate cyclase coupling proteins are not essential for agonist-specific desensitization of lymphoma cells. J. Biol. Chem. 256, 2105–2108.Google Scholar
  15. Hadcock J. R., Malbon C. C. (1988) Down-regulation of β-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc. Natl. Acad. Sci. USA 85, 5021–5025.Google Scholar
  16. Hadcock J. R., Wang H., Malbon C. C. (1989) Agonist-induced destabilization of β-adrenergic receptor mRNA. J. Biol. Chem. 264, 19928–19933.Google Scholar
  17. Harden T. K. (1983) Agonist-induced desensitization of the beta-adrenergic receptor linked adenylate cyclase.Pharmacol. Rev. 35, 5–31.Google Scholar
  18. Hausdorff W. P., Bouvier M., O’Dowd B. F., Irons G. P., Caron M. G., Lefkowitz R. J. (1989) Phosphorylation sites on two domains of the β2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J. Biol. Chem. 264. 12657–12665.Google Scholar
  19. Hausdorff W. P., Caron M. G., Lefkowitz R. J. (1990) Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J. 4, 2881–2889.Google Scholar
  20. Hertel C., Coulter S. J., Perkins J. P. (1985) Comparison of catecholamine-induced internalization of adrenergic receptors and receptor-mediated endocytosis of epidermal growth factor in human astrocytoma cells. J. Biol Chem. 260, 12547–12553.Google Scholar
  21. Kassis S., Sullivan M. (1986) Desensitization of the mammalian β-adrenergic receptor: analysis of receptor redistribution on nonlinear sucrose gradients. J. Cyclic Nucleotide and Protein Phosphorylation Res. 11, 35–46.Google Scholar
  22. Kühn H. (1984) Interactions between photoexcited rhodopsin and light-activated enzymes in rods. Progr. Retinal Res. 3, 123–156.Google Scholar
  23. Lohse M. J. (1990) Quantitation of receptor desensitization by an operational model of agonism. J. Biol. Chem. 265, 3210–3211.Google Scholar
  24. Lohse M. J., Caron M.G., Lefkowitz R. J. Benovic J. L. (1989) Inhibition of β-adrenergic receptor kinase prevents rapid homologous desensitization of β2-adrenergic receptors. Proc. Natl. Acad. Sci. USA 86, 3011–3015.Google Scholar
  25. Lohse M. J., Benovic J. L., Codina J., Caron M. G., Lefkowitz R. J. (1990a) β-Arrestin: a protein that regulates p-adrenergic receptor function. Science 248.1547–1550.Google Scholar
  26. Lohse M. J., Benovic J. L., Caron M. G., Lefkowitz R. J. (1990b) Multiple pathways of rapid β2-adrenergic receptor desensitization: delineation with specific inhibitors. J. Biol. Chem. 265. 3202–3209.Google Scholar
  27. Mahan L. C., Koachman A. M., Insel P. A. (1985) Genetic analysis of β-adrenergic receptor internalization and down-regulation. Proc. Natl. Acad. Sci. USA 82, 129–133.Google Scholar
  28. Nambi P., Peters J. R., Sibley D. R., Lefkowitz R. J. (1985) Desensitization of the turkey erythrocyte β-adrenergic receptor in a cell-free system. J. Biol. Chem. 260. 2165–2171.Google Scholar
  29. O’Dowd B. F., Lefkowitz R. J., Caron M.G. (1989) Structure of the adrenergic and related receptors. Ann. Rev. Neurosci. 12, 67–83.Google Scholar
  30. Shear M., Insel P. A., Melmon K. L., Coffino P. (1976) Agonist-specific refractoriness induced by isoproterenol. J. Biol. Chem. 251. 7572–7576.Google Scholar
  31. Sibley D. R., Strasser R. H., Benovic J. L., Daniel K., Lefowitz R. J. (1986) Phosphorylation/dephosphorylation of the β-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc. Natl. Adad. Sci. USA 83, 9408–9412.Google Scholar
  32. Strader C. D., Sigal I. S., Dixon R. A. F. (1989) Structural basis of p-adrenergic receptor function. FASEB J. 3, 1825–1832.Google Scholar
  33. Waldo G. L., Northup J. K., Perkins J. P., Harden T. K. (1983) Characterization of an altered membrane form of the β-adrenergic receptor produced during agonist-induced desensitization. J. Biol. Chem 258. 13900–13908.Google Scholar
  34. Wang H., Berrios M., Malbon C. C. (1989) Localization of β-adrenergic receptors in A 431 cells in situ. Biochem. J. 263. 553–538.Google Scholar
  35. Wilden U., Hall S.W., Kühn H. (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. Natl. Acad. Sei. USA 83, 1174–1178.Google Scholar
  36. Yoshimasa T., Bouvier M., Benovic J. L., Amlaiky N., Lefkowitz R. J., Caron M. G. (1988) Regulation of the adenylate cyclase signalling pathway: Potential role for the phosphorylaton of the catalytic unit by protein kinase A and protein kinase C. In: Molecular Biology of Brain and Endocrine Peptidergic Systems ( K. W. McKerns and M. Chretien eds., Plenum Publishing Co., N. Y. 123–139 )Google Scholar
  37. Zemcik B. A., Strader C. D. (1988) Fluorescent localization of the adrenergic receptor of DDT-1 cells. Biochem. J. 251, 333–339.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. J. Lohse
    • 1
    • 2
  1. 1.Laboratorium für Molekulare BiologieUniversität MünchenGermany
  2. 2.Max-Planck-Institut für BiochemieMartinsriedFed.Rep.of Germany

Personalised recommendations