Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis — From 1986 to 1990

  • Ivan N. Rich
Part of the NATO ASI Series book series (volume 51)

Abstract

Since the meeting on Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis in September 1986 [1], we have witnessed several major developments in the study of red blood cell production. Several of these developments were discussed as theoretical considerations at that meeting. In the this report I would like to discuss some of the advances that have occurred over the past 4 years.

Keywords

Erythropoiesis Erythropoietin—Molecular Biology Erythropoietin Therapy Erythropoietin Receptors Erythropoietin Sensitivity Erythropoietin Production Kidney Macrophage Oxygen Sensing Review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Rich, I.N. (1987): Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. NATO ASI Series, Vol. H8, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  2. 2).
    Hodgson, G.S., Bradley, T.R. and Radley, J.M. (1982): The organization of hemopoietic tissue as inferred from the effects of 5-fluorouracil. Exp. Hemat. 10:26.PubMedGoogle Scholar
  3. 3).
    Johnson, G.R. and Metcalf, D. (1981): Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc. Natl. Acad. Sci. USA 74: 3879.CrossRefGoogle Scholar
  4. 4).
    Fausner, A.A. and Messner, H.A. (1979): Identification of megakaryocytes, macrophages and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts. BLOOD 53:1023.Google Scholar
  5. 5).
    Till, J.E. and McCulloch, E.A. (1961): A direct measurement of the radiation sensitivity of normal bone marrow cells. Radiation Res. 14:213.PubMedCrossRefGoogle Scholar
  6. 6).
    Axelrad, A.A., McLeod, D.L, Shreeve, M.M. and Heath, D.S. (1973): Poperties of cells that produce erythrocytic colonies in vitro. In: Hemopoiesis in Culture, Robinson, W. (ed.) US. Gorvernment Printing Office, Washington D.C., p. 226.Google Scholar
  7. 7).
    Iscove, N.N. and Sieber, F. (1975): Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp. Hemat 3:32.PubMedGoogle Scholar
  8. 8).
    Stephenson, J.R., Axelrad, A.A., McLeod, D.L and Shreeve, M.M. (1971): Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 44:517.Google Scholar
  9. 9).
    Iscove, N.N., Sieber, F. and Winterhalter, K.H. (1974): Erythroid colony formation in cultures of mouse and human bone marrow; analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J. Cell Physiol. 83:309.PubMedCrossRefGoogle Scholar
  10. 10).
    Rich, I.N. (1976): Erythroid colony formation (CFUe) in fetal liver and adult bone marrow and spleen from the mouse. Blut 33:171.PubMedCrossRefGoogle Scholar
  11. 11).
    Monette, F.C., Ouellette, P.L and Faletra, P.P. (1981): Characterization of murine erythroid progenitors with high erythropoietin sensitivity in vitro. Exp. Hemat. 9:249.PubMedGoogle Scholar
  12. 12).
    Rich, I.N. and Kubanek, B. (1982): The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. Brit. J. Haemat. 52: 579.PubMedCrossRefGoogle Scholar
  13. 13).
    Rich, I.N. (1986): A role for the macrophage in normal hemopoiesis. II. Effect of varying physiological oxygen tensions on the release of hemopoietic growth factors from bone-marrow-derived macrophages in vitro. Exp. Hemat. 14:746.PubMedGoogle Scholar
  14. 14).
    Iscove, N.N., Guilbert, L.J. and Weyman, C. (1980): Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acid, lecithin and cholesterol. Exp. Cell Res. 126:121.PubMedCrossRefGoogle Scholar
  15. 15).
    Migliaccio, A.R., Bruno, M. and Migliaccio, G. (1987): Evidence for direct action of human biosynthetic (recombinant) GM-CSF on erythroid progenitors in serum-free culture. Blood 70:1867.PubMedGoogle Scholar
  16. 16).
    Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, E.F., Kaufman, R.J., Mufson, A., Seehra, J., Jones, S.S., Hewick, R., Fritsch, E.F., Kawakita, M., Shimaza, T. and Miyake, T. (1985): Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806.PubMedCrossRefGoogle Scholar
  17. 17).
    Lin, F.K., Suggs, S., Lin, C.H., Browne, J.K., Smalling, R., Egrie, J.C., Chen, K.K., Fox, G.M., Martin, F., Stabinsky, Z., Badrawi, S.M., Lai, P.H. and Goldwasser, E. (1985): Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 82: 7580.PubMedCrossRefGoogle Scholar
  18. 18).
    Egrie, J.C., Strickland, T.W., Lane, J., Aoki, K., Cohen, A.M., Smalling, R., Trail, G., Lin, F.K., Browne, J.K. and Hinds, D.K. (1986): Characterization and biological effects of recombinant human erythropoietin. Immunobiology 172: 213.PubMedCrossRefGoogle Scholar
  19. 19).
    Sasaki, H., Ochi, N., Dell, A. and Fukuda, M. (1988): Site-specific glycosylation of human recombinant erythropoietin: Analysis of glycopeptides or peptides at each glycosylation site by fast atom bombardment mass spectrometry. Biochem. 27: 8618.CrossRefGoogle Scholar
  20. 20).
    Lappin, T.R.J. and Maxwell, A.P. (1989): Chemistry and assays of erythropoietin. In: Erythropoietin, Jelkmann, W. and Gross, A.J. (eds.). Springer-Verlag, Heidelberg, p. 7.CrossRefGoogle Scholar
  21. 21).
    Recny, M.A., Scoble, H.A. and Kim, Y. (1987): Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. J. Biol. Chem. 262:17156.PubMedGoogle Scholar
  22. 22).
    Lacombe, C., Tambourin, P., Mattei, M.G., Simon, D. and Guenet, J.L. (1989): The murine erythropoietin gene is localized on chromosome 5. Blood 72:1440.Google Scholar
  23. 23).
    Law, M.L., Cai, G.Y., Lin, F.K., Wei, Q., Huang, S.Z., Hartz, J.H., Morse, H., Lin, C.H., Jones, C. and Kao, F.T. (1986): Chromosomal assaigment of the human erythropoietin gene and its DNA polymorphism. Proc. Natl. Acad. Sci. USA 83: 6920.PubMedCrossRefGoogle Scholar
  24. 24).
    McDonald, J., Lin, F.-K. and Goldwasser, E. (1986): Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Mol. Cell Biol. 6: 842.PubMedGoogle Scholar
  25. 25).
    Shoemaker, C.B. and Mitsock, L.D. (1986): Murine erythropoietin gene: Cloning, expression, and human gene homology Mol. Cell Bio. 6: 849.Google Scholar
  26. 26).
    Goldwasser, E., Kung, C.K.-H. and Eliason, J.F. (1974): On the mechanism of erythropoietin-induced differentiation. XIII. The role of sialic acid in erythropoietin action. J. Biol. Chem. 249:4202.PubMedGoogle Scholar
  27. 27).
    Fukuda, M.N., Sasaki, H., Lopez, L and Fukuda, M. (1989): Survival of recombinant erythropoietin in the circulation: The role of carbohydrates. Blood 73: 84.PubMedGoogle Scholar
  28. 28).
    Spivak, J.L and Hogans, B.B. (1989): The in vivo metabolism of recombinant human erythropoietin in the rat. Blood 73: 90.PubMedGoogle Scholar
  29. 29).
    Carnot, P. and Deflandre, C. (1906): Sur l’activité hémapoiétique des différents organes au cours de la régénération du sang. Compt. Rend. Acad. Sci. 143:432.Google Scholar
  30. 30).
    Miyake, T., Kung, C.K.-H. and Goldwasser, E. (1979): Purification of human erythropoietin. J. Biol. Chem. 252: 5558.Google Scholar
  31. 31).
    Eschbach, J.W., Mladenovic, J., Garcia, J.R, Wahl, P.W. and Adamson, J.W. (1985): The anemia of chronic renal failure in sheep. Response to erythropoietin-rich plasma in vivo. J. Clin. Invest. 74: 434.CrossRefGoogle Scholar
  32. 32).
    Eschbach, J.W., Egrie, J.C., Downing, M.R. and Adamson, J.W. (1987): Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. New Engl. J. Med. 316:73.PubMedCrossRefGoogle Scholar
  33. 33).
    Winearls, J.A., Oliver, D.O., Pippard, M.J., Reid, C., Downing, M.R. and Cotes, P.M. (1986): Effect of human erythropoietin derived from recombinant DNA on the anemia of patients maintained by chronic haemodialysis. Lancet 8517:1175.CrossRefGoogle Scholar
  34. 34).
    Graber, S.E. and Krantz, S.B. (1989): Erythropoietin: Biology and clinical use. In: Hematology/Oncology Clinics of North America. Hematopoietic Growth Factors, Golde, D.W. (ed.). W.B. Saunders Company, Philadelphia, USA, p. 369.Google Scholar
  35. 35).
    Growing pains for Amgen as epoetin wins US approval. Nature (1989) 339: 493.Google Scholar
  36. 36).
    Court battle ends at the start. Nature (1989) 342: 846.Google Scholar
  37. 37).
    Annabie, L., Cotes, P.M. and Mussett, M.V. (1972): The second international reference preparation of erythropoietin, human, urinary, for bioassay. Bull Wld. Hlth. Org. 47:99.Google Scholar
  38. 38).
    Egrie, J.C. Cotes, P.M. Lane, J. Gaines Das, R.E., Tarn, R.C. (1987): Development of radioimmunoassays for human erythropoietin using recombinant erythropoietin. J. Immunol. Meth. 99: 235.CrossRefGoogle Scholar
  39. 39).
    Wognum, A.W., Lansdorp, P.M., Eaves, A.C. and Krystal, G. (1989): An enzyme-linked immunosorbant assay for erythropoietin using monoclonal antibodies, tetrameric immune complexes, and substrate amplification. Blood 74: 622.PubMedGoogle Scholar
  40. 40).
    Sawatzki, G. (1987): Isolation of anti-erythropoietin by automated immuno-affinity FPLC using recombinant EPO. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. NATO ASI Series, Vol. H8, Rich,. I.N. (ed.). Springer-Verlag, Heidelberg, p. 409.Google Scholar
  41. 41).
    Vogt, Ch., Noe, G. and Rich, I.N. (1990): Normal steady-state hemopoiesis. Assay of erythropoietin by ELISA, localization of erythropoietin in the kidney and expression of hemopoietic regulator molecules in the bone marrow. In: In: Proceeding of the 5th Annual Symposium on Molecular Biology of Hematopoiesis, Konwalinka, G. and Abraham, N.G. (eds.). Plenum Press (in Press).Google Scholar
  42. 42).
    Rich, I.N. and Noé, G. (1989): A sensitive sandwich ELISA for erythropoietin using highly purified polyclonal anti-erythropoietin IgG. Blood 74Suppl. 1: 331 a (Abstract).Google Scholar
  43. 43).
    D’Andrae, A.D., Lodish, H.F. and Wong, G.G. (1989): Expression cloning of the murine erythropoietin receptor. Cell 57: 277.CrossRefGoogle Scholar
  44. 44).
    Sawyer, S.T., Krantz, S.B. and Goldwasser, E. (1987): Binding and receptor-mediated endocytosis of erythropoietin in Friend Virus-infected erythroid cells. J. Biol. Chem. 262:5554.PubMedGoogle Scholar
  45. 45).
    Sasaki, R., Yanagawa, S.I., Hitomi, K. and Chiba, H. (1987): Characterization of erythropoietin receptor of murine erythroid cells. Eur. J. Biochem. 168:43.PubMedCrossRefGoogle Scholar
  46. 46).
    Fukamachj, H., Tojo, A., Saito, T., Kitamura, T., Nakata, M., Urabe, A. and Takaku, F. (1987): Internalization of radioiodinated erythropoietin and the ligand-induced modulation of its receptor in murine erythroleukemia cells. Intl. J. Cell Cloning 5: 209.CrossRefGoogle Scholar
  47. 47).
    Landschultz, K. and Boyer, S. (1988): Natural history of erythropoietin (EPO)-binding during erythropoiesis. Blood 72:92a.Google Scholar
  48. 48).
    Miller, B.A., Scaduto, R.C., Tillotson, D.L, Botti, J.J. and Cheung, J.V. (1988): Erythropoietin stimulates a rise in intracellular free calcium concentration in single early human erythroid precursors. J. Clin. Invest. 82:309.PubMedCrossRefGoogle Scholar
  49. 49).
    Misti, J. and Spivak, J.L (1979): Erythropoiesis in vitro: Role of calcium. J. Clin. Invest. 64:1573.CrossRefGoogle Scholar
  50. 50).
    Sawyer, S.T. and Krantz, S.B. (1984): Erythropoietin stimulates 45Ca2+ uptake in friend virus-infected erythroid cells. J. Biol. Chem. 259:2769.PubMedGoogle Scholar
  51. 51).
    Thompson, L.P., Sawyer, S.T. and Blackmore, P.F. (1988): A search for the second messenger of erythropoietin. FASEB J 2: A813.Google Scholar
  52. 52).
    Hellman, S., Grate, H.E., Chaffey, J.T. and Carmel, R. (1970): Hematopoietic stem cell compartment: patterns of differentiation following radiation or cyclophosphamide. In: Hemopoietic Cellular Proliferation, Stohlman, F. Jr. (ed.). Grune & Stratton, New York.Google Scholar
  53. 53).
    Kubanek, B., Bock, O., Heit, W., Bock, E. and Harriss, E.B. (1973): Size and proliferation of stem cell compartments in mice after depression of erythropoiesis. In: Haemopoietic Stem Cells, (eds.). Ciba Foundation Symposium. Elsevier., Amsterdam, p. 243.Google Scholar
  54. 54).
    Van Zant, G., Goldwasser, E. and Baron, J.M. (1976): Study of the haemopoietic microenvironment in vitro. Nature 260: 609.PubMedCrossRefGoogle Scholar
  55. 55).
    Spangrude, G.J., Heimfeld, S. and Weissman, I.L (1988): Purification and characterization of mouse hematopoietic stem cells. Science 241: 58.PubMedCrossRefGoogle Scholar
  56. 56).
    Ploemacher, R.E. and Brons, R.H.C. (1989): Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp. Hemat. 17:263.PubMedGoogle Scholar
  57. 57).
    Sonoda, Y., Yang, Y.C., Wong, G.G. and et al. (1988): Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: Interleukin 3 and granulocyte/macrophagecolony-stimulating factor are specific for early developmental stages. Proc. Natl. Acad. Sci. USA 85:4360.PubMedCrossRefGoogle Scholar
  58. 58).
    Kurtz, A., Haertl, W., Jelkmann, W., Zapf, J. and Bauer, C. (1984): Activity in fetal bovine serum that stimulates erythroid colony formation in fetal mouse livers is insulinlike growth factor 1. J. Clin. Invest. 76:1643.CrossRefGoogle Scholar
  59. 59).
    Sawada, K., Krantz, S.B. and Dessypris, E.N. (1989): Human colony-forming units—erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor 1 and/or insulin for erythroid development. J. Clin. Invest. 83:1701.PubMedCrossRefGoogle Scholar
  60. 60).
    Iscove, N.N. (1977): The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet 10:323.PubMedGoogle Scholar
  61. 61).
    Iscove, N.N., Roitsch, C.A., Williams, N. and Guilbert, L.J. (1982): Molecules stimulating early red cell, granulocyte, macrophage, and megakaryocyte precursors in culture: Similarity in size, hydro-phobicity, and charge. J. Cell Physiol. Suppl. 1:65.PubMedCrossRefGoogle Scholar
  62. 62).
    Goldwasser, E., Ihle, J.N., Prystowsky, M.B., Rich, I.N. and Van Zant, G. (1983): The effect of interleukin-3 on hemopoietic precursor cells. In: Normal nad Neoplastic Hematopoiesis, (eds.) Alan R. Liss, Inc., New York, p. 301.Google Scholar
  63. 63).
    Rich, I.N. (1984): Haemopoietic regulation in vitro: In vivo significance of functionally similar multiactive potentiating factors. Ann. Immunol. 135C: 280.Google Scholar
  64. 64).
    Rich, I.N. (1988): The macrophage as a production site for hematopoietic regulator molecules: Sensing and responding to normal and pathophysiological signals. Anticancer Res. 8:1015.PubMedGoogle Scholar
  65. 65).
    Bondurant, M.C., Koury, M.J. (1986): Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell Bio. 6: 2731.Google Scholar
  66. 66).
    Koury, S.T., Koury, M.J., Bondurant, M.C., Caro, J. and Graber, S.E. (1989): Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: Correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74:645.PubMedGoogle Scholar
  67. 67).
    Koury, M.J., Bondurant, M.C., Graber, S.E. and Sawyer, S.T. (1988): Erythropoietin messenger RNA levels in developing mice and transfer of 1251-erythropoietin by the placenta. J. Clin. Invest. 82: 154.PubMedCrossRefGoogle Scholar
  68. 68).
    Goldwasser, E., McDonald, J. and Beru, N. (1987): The molecular biology of erythropoietin and the expression of its gene. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis, Rich, I.N. (ed.). Springer-Verlag, Heidelberg, p. 11.CrossRefGoogle Scholar
  69. 69).
    Caro, J., Schuster, S., Besarab, A. and Erslev, A.J. (1987): Renal bio-genesis of erythropoietin. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis, Rich, I.N. (ed.). Springer-Verlag, Heidelberg, p. 329.CrossRefGoogle Scholar
  70. 70).
    Schuster, S.J., Badiavas, E.V., Costa-Giomi, P., Weinmann, R., Erslev, A.J. and Caro, J. (1989): Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73:13.PubMedGoogle Scholar
  71. 71).
    Koury, S.T., Bondurant, M.C. and Koury, M.J. (1988): Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridizati. Blood 71: 524.PubMedGoogle Scholar
  72. 72).
    Bruneval, P., Da Silva, J.L., Lacombe, C., Salzmann, J.L, Tambourin, P., Varet, B., Camilleri, J.P. and Bariety, J. (1989): Erythropoietin synthesis in the anemic mouse kidney as observed by morphological techniques. In: Erythropoietin, Jelkmann, W. and Gross, A.J. (eds). Springer-Verlag, Heidelberg, p. 26.CrossRefGoogle Scholar
  73. 73).
    Lacombe, C., Da Silva, J.-L., Bruneval, P., Fournier, J.-G., Wendung, F., Casadevall, N., Camilleri, J.-P., Bariety, J., Varet, B. and Tambourin, P. (1988): Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J. Clin. Invest. 81: 620.PubMedCrossRefGoogle Scholar
  74. 74).
    Schuster, S.J., Wilson, J.H., Erslev, A.J. and Caro, J. (1987): Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood 70: 316.PubMedGoogle Scholar
  75. 75).
    Vogt, Ch., Pentz, S. and Rich, I.N. (1989): A role for the macrophage in normal hemaopoiesis. III. In vitro and in vivo erythropoietin gene expression in macrophages detected by in situ hybridization. Exp. Hemat. 17: 391.PubMedGoogle Scholar
  76. 76).
    Maxwell, A.P., Lappin, T.R.J., Johnston, C.F. and Bridges, J.M. (1989): Erythropoietin production by kidney tubular cells — immunohisto-chemical and in situ hybridization studies. Exp. Hemat. 17: 223. (Abstract)Google Scholar
  77. 77).
    Maxwell, A.P., Lappin, T.R.J., Johnston, C.F., Bridges, J.M. and McGeown, M.G. (1990): Erythropoietin production in kidney tubular cells. Brit. J. Haemat. (in Press).Google Scholar
  78. 78).
    Nathan, D.G., Schupak, E. and Stohlman, F. (1964): Erythropoiesis in anephric man. J. Clin. Invest. 43: 2158.PubMedCrossRefGoogle Scholar
  79. 79).
    Fisher, J.W. (1979): Extrarenal erythropoietin production. J. Lab. Clin. Med. 93: 695.PubMedGoogle Scholar
  80. 80).
    Rich, I.N., Heit, W. and Kubanek, B. (1980): An erythropoietic stimulating factor similar to erythropoietin released by macrophages after silica treatment. Blut 40:297.PubMedCrossRefGoogle Scholar
  81. 81).
    Rich, I.N. (1987): Erythropoietin production by macrophages: Cellular response to physiological oxygen tensions and detection of erythropoietin gene expression by in situ hybridization. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. NATO ASI Series, Vol. H8, Rich, I.N. (ed.). Springer-Verlag, Berlin Heidelberg, p. 291.CrossRefGoogle Scholar
  82. 82).
    Vogt, Ch., Noé, G. and Rich, I.N. (1990): The role of the blood island during normal and 5-fluorouracil-perturbated hemopoiesis. Blood Cells (in Press).Google Scholar
  83. 84).
    Acker, H. (1989): PO2 chemoreception in arterial chemoreceptors. Ann. Rev. Physiol. 51:835.CrossRefGoogle Scholar
  84. 85).
    Rich, I.N. (1988): Oxygen tension and erythropoietin production: The role of the macrophage in regulating erythropoiesis. In: Oxygen Sensing in Tissues, Acker, H. (ed.). Springer-Verlag, Berlin Heidelberg, p. 113.Google Scholar
  85. 86).
    Bauer, C. (1988): Metabolic events that may activate erythropoietin production in the hypoxic kidney. In: Oxygen Sensing in Tissues, Acker, H. (ed.). Springer-Verlag, Heidelberg, p. 93.Google Scholar
  86. 87).
    Epstein, F.H. (1985): Hypoxia of the renal medulla. Quarterly J. of Med. 224: 807.Google Scholar
  87. 88).
    Jones, D.P. (1986): Renal metabolism during normoxia, hypoxia, and ischemic injury. Ann. Rev. Physiol. 48: 33.CrossRefGoogle Scholar
  88. 89).
    Balaban, R.S., Soltoff, S.P., Storey, J.M. and Mandel, L.J. (1980): Improved renal cortical tubule suspension: Spectrophotometric study of O2 delivery. Am. J. Physiol. 241: F50.Google Scholar
  89. 90).
    Goldberg, M.A., Dunning, S.P. and Bunn, H.F. (1988): Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein. Science 242:1412.PubMedCrossRefGoogle Scholar
  90. 91).
    Beru, N., Smith, D.H. and Goldwasser, E. (1989): Evidence for a negative factor regulating erythropoietin gene expression. Leukemia Res. 13, Suppl. 1:3 (Abstract).Google Scholar
  91. 92).
    Beru, N., Smith, D. and Goldwasser, E. (1989): Evidence for a negative regulator of the erythropoietin gene. Blood 74, Suppl 1:192a (Abstract).Google Scholar
  92. 93).
    Goldberg, M.A., Gaut, C.C. and Bunn, H.F. (1989): Erythropoietin mRNA levels are regulated by both transcriptional events and by changes in RNA stability. Blood 74,Suppl 1:191a (Abstract).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Ivan N. Rich
    • 1
    • 2
  1. 1.Department of Transfusion MedicineUniversity of UlmUlm/DonauGermany
  2. 2.German Red Cross Blood BankUlm/DonauGermany

Personalised recommendations