Advertisement

Recognition and Cell Signals in Mutualistic Symbioses

  • Silvano Scannerini
Part of the NATO ASI Series book series (volume 51)

Abstract

The definition of mutualistic symbioses is still a matter of dispute, as are their landmarks and cataloguing. The many semantic, topological and functional problems involved have been reviewed on several occasions (1, 2, 3) and will not discussed in this paper. There is none the less a general consensus of opinion that a mutualistic symbiont system, usually referred to as a symbiont system tout court, can be regarded as a combination of two or more organisms of different species that share a very close common existence for long periods and gain a reciprocal advantage therefrom that is reflected in their biological cycle, availability of energy and metabolites, and growth. The overall result is an increase in fitness that is open to assessment through clearly defined cost-benefit algorithms (4).

Keywords

Infection Thread Mutualistic Symbiosis Luminescent Bacterium Symbiotic System Microbial Symbiosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Lewis, D.H., 1985. Symbiosis and Mutualism. Crisp Concepts and Soggy Semantics. In “The Biology of Mutualism. Ecology and Evolution”. Edited by Boucher, D.H. (Crown Helm. London & Sidney). pp. 29–39.Google Scholar
  2. 2).
    Smith, D.C., Douglas, A.E., 1987. The biology of mutualism. (Edward Arnold. London).Google Scholar
  3. 3).
    Scannerini, S., 1988. The Cell structures in Plant, Animal and Microbial Symbionts. Their differences and similarities. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 143–157.CrossRefGoogle Scholar
  4. 4).
    Boucher, D.H. (ed.) 1985. The Biology of Mutualism. Ecology and Evolution. (Crown Helm. London-Sidney).Google Scholar
  5. 5).
    Margulis, L., 1981, Symbiosis in Cell Evolution. (Freeman & Co. San Francisco).Google Scholar
  6. 6).
    Lewis, D.H., in press. Fungi and the Flora which inherited the Earth. In “Evolution and Speciation: Symbiosis as a Source of Evolutionary Innovation”. ntEdited by MARGULIS, L & Fester, R., (MIT Press. Boston Ma.) in Press.Google Scholar
  7. 7).
    Vetter, R. in press. Symbioses and novel energy sources: chemoautotrophic organism at idrotermal vent. In “Evolution and speciation: Symbiosis as a source of Evolutionary Innovation”. Edited by Margulis, L. and Fester, R. (MIT Press Boston Ma.).Google Scholar
  8. 8).
    Ahmadijan, V. and Hale, M.E. (eds). 1974. The lichens (Academic Press, London-New York).Google Scholar
  9. 9).
    Harley, J.L Smith, S.E., 1983. Mycorrhizal symbiosis. (Academic Press. London).Google Scholar
  10. 10).
    Muscatine, L., 1973. Nutrtion of corals. In “Biology and Geology of Coral Reefs”. Edited by Jones, O.A. and Endean, R. (Academic Press N. York and London). 2(1): 77–155.Google Scholar
  11. 11).
    Nardon, P., Grenier, A.M., 1988. Genetical and biochemical interactions between the host and its endocytobiotes in the weevils. Sytophilus (Coleoptere, Curculionidae) and other related species. In “Cell to cell signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer Verlag, Berlin, Germany). pp. 255–270.CrossRefGoogle Scholar
  12. 12).
    Honneger, R., 1988. The functional morphology of cell to cell interactions in lichens. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S, Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Person, V. (Springer-Verlag. Berlin, Germany) pp. 36–53.Google Scholar
  13. 13).
    Mc Fall-Ngay, M.J., in press. Luminous bacterial symbiosis in fish evolution: adaptative radiation in Leiognathid Fishes. In “Evolution and speciation: Symbiosis as a source of evolutionary innovation”. Edited by Margulis, L. and Fester, R., (MIT Press. Boston Ma.).Google Scholar
  14. 14).
    Torrey, J.G., 1988. Cellular interactions between host and endosymbiont in Dinitrogen-fixing root-nodules of woody plants. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin. Germany) pp. 1–25.CrossRefGoogle Scholar
  15. 15).
    Scwemmler, W. in press. Analysis of the gas metabolism of fertilized and unfertilized leafhopper eggs with endocytobionts. In “Endocytobiology IV”. Edited by Nardon, P., Grenier, A.M., (INRA Presse, Paris, France).Google Scholar
  16. 16).
    Berta, G., Fusconi, A., Trotta, A. and Scannerini, S., in press. Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 on ihe root system of Allium porrum L. New Phytol.Google Scholar
  17. 17).
    Smith, D.C., 1979. From extracellular to intracellular: the establishment of a symbiosis. Proc. R. Soc. London, B 204:115–130.CrossRefGoogle Scholar
  18. 18).
    Reisser, W. 1988. Signals in Paramecium bursaria-Chlorella sp. Association. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin) pp. 271–282.CrossRefGoogle Scholar
  19. 19).
    Douglas, A. 1988. Nutrition interactions as signals in the Green Hydra symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 283–310.CrossRefGoogle Scholar
  20. 20).
    McAuley, P, J., 1988. Cell to cell interactions during the establishment of the Hydra-Chlorella symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer Verlag, Berlin) pp. 115–130 Attenzione.CrossRefGoogle Scholar
  21. 21).
    Jeon, K.W., Integration of bacterial endosymbionts in Amoeba. In International Review of Cytology. Suppl. 14. Intracellular Symbiosis. Edited by Jeon, K. W. pp. 29-47Google Scholar
  22. 22).
    Tiivel, T 1987. Leafhopper endocytobiosis. Endocyt. C. Res. 4: 25–39.Google Scholar
  23. 23).
    Margulis, L., Bermudes, 1988. Symbiosis and Evolution: a brief guide to recent literature. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P, Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany) pp. 159–165.CrossRefGoogle Scholar
  24. 24).
    Margulis, L. and Fester, R., (Eds.), in press. Evolution and Speciation: Symbiosis as a source of Evolutionary Innovation. (MIT Press. Boston Ma.).Google Scholar
  25. 25).
    Taylor, F.J.R., 1983. Some eco-evolutionary aspects of intracellular symbiosis. In international Review of Cytology. Suppl. 14: Intracellular Symbiosis. Edited by JEON, K.W.. pp. 1-28.Google Scholar
  26. 26).
    Schwemmler, W., 1989. Symbiogenesis a Macro-Mechanism of Evolution. (W. de Gruyter, Berlin, Germany).Google Scholar
  27. 27).
    Park, M.S., Jeon, K.W., in press. A symbiont gene coding for a protein required for the host Amoeba: Cloning and expression in phage-transformed E. coli. In “Endocytobiology IV”. Edited by Nardon, P., Grenier, A.M. (INRA Presse, Paris, France).Google Scholar
  28. 28).
    Hara, E., Ishikawa, E., in press. Characterization of symbionin only one protein produced by an aphid endosymbiont in vivo. In “Endocytobiology IV”. Edited by Nardon, P., Grenier, A.M. (INRA Presse, Paris, France).Google Scholar
  29. 29).
    Zaat, S.A.J., Spaink, H.P. Wijffelman, C.A., Van Brussel, A.A.N., Okker, R.J.H. and Lugtenberg, B.J.I., 1988. Flavonoid compounds as molecular signals in Rhizobium-Legume Symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany) pp. 189–205.CrossRefGoogle Scholar
  30. 30).
    Goff, L. in press. Symbiosis, interspecific gene transfer and the evolution of new species: A case study in the parasitic Red Algae. In “Evolution and Speciation: Symbiosis as a source of Evolutionary innovation”. Edited by Margulis, L., Fester, R. (MIT Press, Boston Ma).Google Scholar
  31. 31).
    Nealson, K, Schmidt, T.M., and Bleakley, B., 1988. Luminescent bacteria symbionts of Nematodes and Pathogen of Insects. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin, Germany). pp. 101–113.CrossRefGoogle Scholar
  32. 32).
    Kordyum, V.A., 1988. Information channels of pro-and eukaryotes. Comparative analysis. In “Lectures in Theoretical Biology”. Edited by Kull, K., Tiivel, T., (Valgus, Tallinn, Estonia) pp. 84–101.Google Scholar
  33. 33).
    Scannerini, S., Bonfante-Fasolo, P., 1983. Comparative Ultrastructural Analysis of mycorrhizal associations. Can. J. Bot. 61: 917–943.CrossRefGoogle Scholar
  34. 34).
    Gianinazzi-Pearson, V., Gianinazzi, S., 1988. Morphological Integration and functional compatibility between symbionts in vesicular-arbuscular endomycorrhizal associations. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 73–84.CrossRefGoogle Scholar
  35. 35).
    Reisser, W., in press. Endocytobiotic ciliate-algae associations: Model system for the study of basic principles ofsymbiosis formation. In “Endocytobiology IV”: Edited by Nardon, P., Grenier, A.M., (INRA, Presse, Paris, France).Google Scholar
  36. 36).
    Douglas, A., 1988. Specificity in the Convoluta roscoffensis-Tetraselmis Symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 219–233.Google Scholar
  37. 37).
    Bonfante-Fasolo, P., 1988. The role of cell wall as a signal in mycorrhizal associations. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P, Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 219–233.CrossRefGoogle Scholar
  38. 38).
    Bonfante-Fasolo, P. and Perotto, S., in press. Mycorrhizal and Pathogenic Fungi. Do they share any common features? In “Electron Microscopy and Plant Pathology”. Edited by Mendgen, K., (Springer-Verlag, Berlin, Germany).Google Scholar
  39. 39).
    Halveston, G. and Stacey, S., 1986. Signal exchange in plant-microbe interactions. Microbiol. Rev. 50:193–225.Google Scholar
  40. 40).
    Jeon, K.W., 1986. Change of cellular pathogen into required Cell component. In “Endocytobioogy III”. Edited by Lee, J.I. and Frederick, J.F., Ann. N.Y. Acad. Sci. 503: 359-371.Google Scholar
  41. 41).
    Grilli-Caiola, M., Albertano, P., 1988. Recognition Mechanisms in the Azolla-Anabaena Symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin). pp. 27–38.CrossRefGoogle Scholar
  42. 42).
    Scannerini, S., Bonfante-Fasolo, P., in press. Glomaceae, Endocytobiosis and Fungal Evolution: A lost opportunity? In “Evolution and Speciation: Symbiosis as a Source of Evolutionary Innovation”. Edited by Margulis, L., Fester, R., (MIT Press, Boston Ma).Google Scholar
  43. 43).
    Palade, G.E., Farquar, M.G., 1981. Cell Biology and Pathophysiology. In “The Biological Principles of disease”. Edited by Smith, L.H., Thier, S.O., (Sanders, Phyladelphia, USA). pp. 1–56.Google Scholar
  44. 44).
    Ouchi, S., 1983. Induction of resistance or susceptibility. Ann. Rev. Phytopathol. 21: 289–315.CrossRefGoogle Scholar
  45. 45).
    Matta, A., 1971. Microbial penetration and immunization of uncongenial host plants. Ann. Rev. Phytopathol. 9: 387–410.CrossRefGoogle Scholar
  46. 46).
    Matta, A., 1989. Induced Resistance to Fusarium wilt Disease. In “Vascular wilt Diseases of Plants”. Edited by Tjamos, J., Beckmann, C., (Springer-Verlag, Berlin, Germany) pp. 175–196.Google Scholar
  47. 47).
    Hahlbrock, K., Cuypers, B., Douglas, C., Fritzmeier, K.H., Hoffmann, H., Rohver, F., Scheel, D. and Schultz, W., 1986. Biochemical interactions of plants with potentially pathogen Fungi. In “Recognition in Microbe-Plant symbiotic and pathogenic interactions”. Edited by Lugtenberg, B, (Springer-Verlag, Berlin, Germany). pp. 311–324.CrossRefGoogle Scholar
  48. 48).
    Keen, N.T., 1986. Pathogenic strategies in Fungi. In “Recogniton in Microbe-Plant symbiotic and pathogenic interactions”. Edited by Lugtenberg, B., (Springer-Verlag, Berlin, Germany). pp. 171–188.CrossRefGoogle Scholar
  49. 49).
    Berta, G., Sgorbati, S., Soleri, V., Fusconi, A., Trotta, A., Citterio, M.G., Sparvoli, E. and Scannerini, S., in press. Chromatin structure variations in host nuclei of a VA mycorrhiza. New Phytol.Google Scholar
  50. 50).
    Roth, L.E., Stacey, G., 1989. Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane come from three sources. Europ. J. Cell Biol. 49: 13–23.PubMedGoogle Scholar
  51. 51).
    Rahat, M., Reich, V. 1988. The establishment of Algal/Hydra symbioses — A case of recognition or preadaptation? In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin, Germany). pp. 297–310.CrossRefGoogle Scholar
  52. 52).
    Abu-El Teen, K., Ghannum., M., and Stretton, R.J., 1989, Effects of sub-inhibitory Agents on the aderence of Candida spp. to buccal epithelial cells in vitro, Mykosen. 32: 552–561.Google Scholar
  53. 53).
    Shaper, W.M., Rest, R.E., 1989. Interaction of Gonococci with phagocytic cells. Ann. Rev. Microbiol. 43: 121–145.CrossRefGoogle Scholar
  54. 54).
    Bracker, C.E., Littlefield, L.J., 1973. Structural concepts of Host-Pathogen interfaces. In “Fungal Pathogenecity and the Plant’s Response”. Edited by Byde, R.J.W. and Cutting, C.V., (Academic Press, London UK) pp. 159–318.Google Scholar
  55. 55).
    Scannerini S., Bonfante-Fasolo, P., Fontana, A., 1975, An ultrastructural model for the host-symbiont interactions in the endotrophic mycorrhiza of Ornithogalum umbellatum L. In “Endomycorrhizae”. Edited by Sanders, F.E., Mosse, B. and Tinker, P.B., (Academic Press, London, UK) pp. 313–324.Google Scholar
  56. 56).
    Green, J.R., Jones, J.L., and Callow, J.A. 1988. The application of Monoclonal Antibody Technology to the study of Cell-Cell interactions. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer Verlag, Berlin, Germany) pp. 362–371.Google Scholar
  57. 57).
    Bonante-Fasolo, P., Perotto, S., Testa, B., Faccio, A., 1987. Ultrastructural localization of Cell surface sugar residues in ericoid mycorrhizal fungi by gold labelled lectins. Protoplasma. 137: 25–35.CrossRefGoogle Scholar
  58. 58).
    Bonfante-Fasolo, P., Vian, A., Perotto, S., Faccio, A. and Knox, J.P., in press. Cellulose and pectin localization in roots of mycorrhizal Allium porrum: labelling continuity between host cell wall and interfacial material. Planta.Google Scholar
  59. 59).
    Bonfante-Fasolo, P. and Scannerini, S., in press. The cellular basis of Plant-Fungus interchanges in mycorrhizal associations. In “Mycorrhizal Functioning”. Edited by Allen, M.F. (Chapmann and Hall, London UK).Google Scholar
  60. 60).
    Bonfante-Fasolo, P., Vian, B., 1989. Cell wall architecture in mycorrhizal roots of Allium porrum L., Ann. Sci. Nat. Bot. 10: 93–109.Google Scholar
  61. 61).
    Roth, L.E., Jeon, K.W., Stacey, G., 1988. Homology in endosymbiontic systems. The term symbiosome. In “Molecular Genetics of Plant-Microbe interactions”. Edited by Palacios, R., Verna, D.P.S. (APS Press, Saint Paul, Minnesota) pp. 220–225.Google Scholar
  62. 62).
    Trench, R.K., 1988 Specificty in dinomastigote-marine invertebrate symbioses: An evaluation of hypotheses of mechanisms involved in producing specificity. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag. Berlin Germany) pp. 325–346.CrossRefGoogle Scholar
  63. 63).
    Roth, L.E., Stacey, G., 1989. Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied in two Bradyrhizobium japonicum mutant strains. Eur. J. Cell Biol. 49: 24–32.PubMedGoogle Scholar
  64. 64).
    Hinde, R., 1988 Factors produced by symbiotic marine invertebrate which affect traslocation between the symbiont. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S, Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany) pp. 311–324.CrossRefGoogle Scholar
  65. 65).
    Nardon, P., 1988. Cell-to-Cell interactions in insect endocytobiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin, Germany) pp. 85–100.CrossRefGoogle Scholar
  66. 66).
    Holtzman, E., 1989. Lysosomes. (Plenum Press) New York. USA.Google Scholar
  67. 67).
    Scannerini, S., 1985. Mycorrhizal Symbiosis. 2: The Process. Riv. Biol. 78: 546–553.Google Scholar
  68. 68).
    Hilmer, S., Depta, H., Robinson, D.G., 1986. Confirmation of endocytosis in higher plant protoplast using lectin-gold conjugates. Eur. J. Cell Biol. 41: 142–149.Google Scholar
  69. 69).
    Tanchak, W.A., Griffing, L.R., Mersey, B.G. and Fowkes, C.C. 1984. Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta, 162: 481–486.CrossRefGoogle Scholar
  70. 70).
    Boller, T., Wiemken, A., 1987. Dynamics of lysosomal functions in plant vacuoles. In “Plant Vacuoles”. Edited by Marin, B. (Plenum Press, New York USA) pp. 361–368.Google Scholar
  71. 71).
    Saxton, M.J., Breidenbach, R, W., 1988. Receptor mediated endocytosis in plants is energetically possible. Plant Physiol. 86: 993–995.PubMedCrossRefGoogle Scholar
  72. 72).
    Spanu, P., Bonfante-Fasolo, P., 1988. Cell wall bound peroxidase activity in roots of mycorrhizal Allium porrum. New Phytol. 109: 119–124.CrossRefGoogle Scholar
  73. 73).
    Hoffstein, S.T., 1980. Intra-and extracellular secretion from polymorphonuclear leukocytes. In “The Cell Biology of inflammation” (Elsevier-North Holland, Amsterdam The Nederland) pp. 387–480.Google Scholar
  74. 74).
    Vandenbosch, K.A., Bradley, D.J., Perotto, S., Knox, J.P., Butcher, G.W., Brewin, N.J., 1989. Common components of the infection thread matrix and the intercellular space identified by immunicytochemical analysis of pea nodules and uninfected roots. EMBO J. 8: 335–342.PubMedGoogle Scholar
  75. 75).
    Van Deurs, B., Petersen, O.W., Olsens, S. and Sandvig, K., 1989. The ways of Endocytosis. International Review of Cytology; A survey of Cell Biology. 117:131–135.Google Scholar
  76. 76).
    Cavalier-Smith, T., 1988. Eukaryote Cell Evolution. In “Proceedings of XIV International Botanical Congress”, Edited by Rayner, A.D.M., Brasier, C.M. and Zimmer, B., (Koeltz Scientific Publications, Koeningstein, Germany). pp. 203–233.Google Scholar
  77. 77).
    Trench, K.R., 1980. Uptake, retention and function of chloroplasts in animal cells. In “Endocyto-biology I”. Edited by Schwemmler, W. and Schenk, H.A.E., (W. De Gruyter, Berlin, Germany) pp. 703–727.Google Scholar
  78. 78).
    Bonfante-Fasolo, P., Gianinazzi-Pearson, V., Martinengo, L., 1984. Ultrastructural aspects of endomycorrhizae in the Ericaceae. IV: Comparison of infection by Pezizella ericae in host and non host plants. New Phytol. 98: 329–333.CrossRefGoogle Scholar
  79. 79).
    Piche, Y., Peterson, R.L. and Massicotte, H.B., 1988. Host-Fungus interactions in ectomycorrhzae. In “Cell to Cell Signals in Plants, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany) pp. 55–71.CrossRefGoogle Scholar
  80. 80).
    Hilbert, J.L., Martin, F., 1988. Regulation of gene expression in ectomycorrhizae, 1. Protein changes and the presence of ectomycorhiza specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New Phytol. 110: 339–346.CrossRefGoogle Scholar
  81. 81).
    Peters, G.A., Meecks, J.C. 1989. The Azolla-Anabaena Symbiosis. Basic Biology. Ann. Rev. Plant Physiol. Mol. Biol. 40:193–210.CrossRefGoogle Scholar
  82. 82).
    Dazzo, F.R., Hollingsworth, R.I., Philip-Hollingsworth, S., Smith, K.B., Welsch, M.A., Djordjevic, M., and B.G. Rolfe, 1988. Early recognition signals in Rhizobiurn-legume Symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany) pp. 189–200.Google Scholar
  83. 83).
    Massicotte, H.B., Ackerley, C.A. and Peterson, R.L., 1989. Ontogeny of Alnus rubra-Alpova diplophaeus ectomycorrhizae. II. Transmission Electron Microscopy. Can. J. Bot. 65: 1940–1947.CrossRefGoogle Scholar
  84. 84).
    Monsigny, M., Roche, A.C., Kieda, C., Mayer, R. and Midoux, P. 1988. Peptide and carbohydrate moieties as molecular signals in animal cell recognition. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany) pp. 237–254.CrossRefGoogle Scholar
  85. 85).
    Cassone, R., Torasantucci, A., Boccanera, M., Pellegrini, G., Palma, C., Malavasi, F., 1988. Production and characterization of a monoclonal antibody to a cell surfacee, glucomannoprotein constituent of Candida albicans and other pathogenic Candida species. J. Med. Microbiol. 27: 233–238.PubMedCrossRefGoogle Scholar
  86. 86).
    Boller, T., 1989. Primary Signals and second messengers in the reactions of Plants to Pathogen. In “Second Messengers in Plant growth and Development” pp. 227-255.Google Scholar
  87. 87).
    Smith, D.C. 1988. Concepts leading to an understanding of recognition and signalling between hosts and symbionts. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (Springer-Verlag, Berlin, Germany) pp. 347–359.Google Scholar
  88. 88).
    Nuti, M.P., Pasti, M.B. and Squartini, A., 1988. Application of genetic engineering to symbiontology in Agriculture. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Spring-er-Verlag, Berlin, Germany) pp. 347–359.CrossRefGoogle Scholar
  89. 89).
    Spanu, P., Boller, T., Ludwig, A., Viemken, A., Faccio, A., Bonfante-Fasolo, P., 1989. Chitinase in roots of mycorrhizal Allium porrum regulation and localization. Planta 177: 447–456.CrossRefGoogle Scholar
  90. 90).
    Galun, M. and Gerty, J. 1988 Soredia formation of compatible and incompatible lichen symbiosis. In “Cell to Cell Signals in Plant, Animal and Microbial, Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 208–217.Google Scholar
  91. 91).
    Brewin, N.J., Bradley, D.J., Wood, E.A., Kannenberg, E.L., Vandenbosch, K.A., Butcher, G.W. 1988. The use of monoclonal antibodies to investigate Plant-Microbe interactions in pea root nodules containing Rhizobium leguminosarum. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gia-Ninazzi-Pearson, V., (Springer-Verlag, Berlin) pp. 374–383.Google Scholar
  92. 92).
    Callow, J.A., Ray, T., Estrada-Garcia, T.M. and Green, J.R., 1988. Molecular Signals in Plant Cell Recognition. In “Cell to Cell Signals in Plant, Animal and Microbial Symbiosis”. Edited by Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., (Springer-Verlag, Berlin, Germany). pp. 167–182.CrossRefGoogle Scholar
  93. 93).
    Trewavas, J, A., (Ed.) 1986. Molecular and cellular aspects of Calcium in Plants develpoment. (Plenum Press. New York, USA)Google Scholar
  94. 94).
    Castoria, R., Fabbri, A.A. and Fanelli, C., 1989 Hypersensitive response in potato tubers induced by arachidonic and eicosapentaenoic acid. Giorn. Bot. Ital. 123(suppl. 2): 47.Google Scholar
  95. 95).
    Lugtenberg, B., (ed.) 1986. Recognition in microbe-plant symbiotic and pathogenic interactions. (Springer-Verlag, Berlin, Germany).Google Scholar
  96. 96).
    Smith, S.E, and Gianinazzi-Pearson, V., 1988. Physiological interactions between symbionts in vesicular arbuscular mycorrhizal plants. Ann. Rev. Plant Physiol. Mol. Biol. 39: 221–244.CrossRefGoogle Scholar
  97. 97).
    Codignola, A., Verotta, L., Spanu, P., Maffei, M., Scannerini, S., and Bonfante-Fasolo, P., 1989. Cell wall bound phenols in roots of vesicular-arbuscular mycorrhizal plants. New Phytol. 112: 221–228.CrossRefGoogle Scholar
  98. 98).
    Djordjevic, M.A., Gabriel, D.W., Rolfe, B.G., 1987. Rhizobium the refined parasite of legumes. Ann. Rev. Phytopathol. 25: 145–168.CrossRefGoogle Scholar
  99. 99).
    Caron, F., Mayer, E., 1989. Molecular basis of surface antigen variation in Paramecia. Ann. Rev. Microbiol. 43: 33–42.CrossRefGoogle Scholar
  100. 100).
    Van Etten, H.D., Matthews, D.E. and Matthews, P.S. 1989. Phytoalexins detoxication. Importance for pathogenicity and practical implications. Ann. Rev. Phytopathol. 27: 143–164.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Silvano Scannerini
    • 1
  1. 1.Dipartimento di Biologia Vegetale dell’Universita di TorinoTorinoItalia

Personalised recommendations