Advertisement

Movements and Morphogenetic Changes in Response to Signal Reception in Higher Plants

  • B. Millet
Part of the NATO ASI Series book series (volume 51)

Abstract

Plants respond to internal or external stimuli through processes that lead to morphological (e.g., tropic or nastic curvatures, thigmomorphogenesis) or physiological (e.g., flowering, growth correlations, rhizogenesis) changes. Such processes can be understood by analysing the steps of the classical paradigm used to approach the underlying mechanisms: signal reception → transduction → transmission → response.

Keywords

Intercellular Communication Jerusalem Artichoke Signal Perception Leaf Movement Chenopodium Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Morse, M.J., Satter, R.L., Crain, R.C. & Cote, G.G. (1989). Signal transduction and phosphatidylinositol turnover In plants. Physiol. Plant, 76, 118–121.CrossRefGoogle Scholar
  2. 2).
    Morse, M.J., Crain, R.C. & Satter, R.L (1987b). Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proc. Nat. Acad. Sci., 84, 7075–7078.PubMedCrossRefGoogle Scholar
  3. 3).
    Roblin, G., Fleurat-Lessard, P. & Bonmort, J. (1989). Effects of compounds affecting calcium channels on phytochrome — and blue pigment — mediated pulvinar movements of Cassia fasciculata. Plant Physiol. 90, 697–701.PubMedCrossRefGoogle Scholar
  4. 4).
    Nishizaki, Y. (1986). Rhythmic and blue light-induced turgor movements and electrical potential in the laminar pulvinus of Phaseolus vulgaris L Plant Cell Physiol., 27(1), 155–162.Google Scholar
  5. 5).
    Nishizaki, Y. (1988). Blue light pulse-induced transient changes of electrical potential and turgor pressure in the motor cells of phaseolus vulgaris L. Plant Cell Physiol., 29(6), 1041–1046.Google Scholar
  6. 6).
    Blum, W., Hinsch, K.D., Schulz, G. & Weiler, E.W. (1988). Identification of GTP-binding proteins in the plasma membrane of higher plants. Biochem. Biophys. Res. Commun., 156, 954–959.PubMedCrossRefGoogle Scholar
  7. 7).
    Horwitz, B.A. (1989). The potential for second messengers in light signalling. In: “Second messengers in plant growth and development”. W.F. Boss & D.J. Morré Eds, New York: Alan R. Liss, Inc., 289–313.Google Scholar
  8. 8).
    Gaul, G., Aducci, P. & Marme, D. (1989). G proteins in plants? NATO Internat. Symposium, Signal perception and transduction in higher plants, Toulouse, Abstracts, L 8.Google Scholar
  9. 9).
    Morse, M.J., Crain, R.C. & Satter, R.L (1987a). Phosphatidylinositol cycle metabolites in Samanea saman pulvini. Plant Physiol., 83, 640–644.PubMedCrossRefGoogle Scholar
  10. 10).
    Cote, G.G., Depass, A.L., Quarmby, L.M., Tate, B.F., Morse, M.J., Satter, R.L., Crain, R.C. (1989). Separation and characterization of inositol phospholipids from the pulvini of Samanea saman. Plant Physiol., 90, 1422–1428.PubMedCrossRefGoogle Scholar
  11. 11).
    Irvine, R.F., Letcher, A.J., Lander, D.S., Drobak, B.K., Dawson, A.P. & Musgrave, A.(1989). Phosphatidylinositol (4,5) biphosphate and phosphatidylinositol (4) phosphate in plant tissues. Plant Physiol, 89, 888–892.PubMedCrossRefGoogle Scholar
  12. 12).
    Morse, M.J., Cote, G.G., Crain, R.C. & Satter, R.L (1988). Light-modulated phosphatidylinositol turnover in Samanea saman. Plant Physiol., 86(4) suppl. 93.Google Scholar
  13. 13).
    Helm, S., Bauleke, A., Wylegalla, C., Wagner, K.G. (1987). Evidence of phosphatidylinositol and diacylglycerol kinases in suspension cultured plant cell. Plant Science, 49, 159–165.CrossRefGoogle Scholar
  14. 14).
    Ettlinger, C. & Lehle, L (1988). Auxin induces rapid changes in phosphatidylinositol metabolites. Nature, 331,176–178.PubMedCrossRefGoogle Scholar
  15. 15).
    Scherer, G.F.E. (1989). Phospholipid-stimulated protein kinase. NATO Internat. Symposium, Signal perception and transduction in higher plants, Toulouse, Abstracts, L 6.Google Scholar
  16. 16).
    Cho, M., Memon, A.R. & Boss, W.F. (1989). Identification and characterization of polyphos-phoinositides in thetonoplast membrane. Plant Physiol., 89(4), suppl, 149.Google Scholar
  17. 17).
    Boss, W.F., Memon, A. & Chen, Q. (1989). Phospholipid-derived messengers. NATO Internat. Symposium, Signal perception and transduction in higher plants, Toulouse, Abstracts, L 11.Google Scholar
  18. 18).
    Streb, H., Irvine, R.D., Berridge, M.J. & Schulz, I. (1983). Release of Ca2+ form a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature, 306, 67–69.PubMedCrossRefGoogle Scholar
  19. 19).
    Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N. & Mikoshiba, K. (1989). Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature, 342,32–38.PubMedCrossRefGoogle Scholar
  20. 20).
    Ferris, C.D., Huganier, R.L., Supattapone, S. & Snyder, S.H. (1989). Purified 1,4,5-tris-phosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature, 342, 87–89.PubMedCrossRefGoogle Scholar
  21. 21).
    Schumacher, K.S. & Sze, H. (1987). lnositol-1,4,5-triphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J. Biol. Chem., 262, 3944–3946.Google Scholar
  22. 22).
    Poovaiah, B.W. & Readdy, A.S.N. (1987). Calcium messenger system in plants. (C.R.C. Crit. Rev. Plant Sci., 6, 47–103.CrossRefGoogle Scholar
  23. 23).
    Rincon, M. & Boss, W.F. (1987). Myo-inositol trisphosphate mobilizes calcium from fusogenic carrot (Daucus carota L)protoplasts. Plant Physiol, 83, 395–398.PubMedCrossRefGoogle Scholar
  24. 24).
    Drobak, B.K. & Ferguson, I.B. (1985). Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-triphosphate. Biochem. Biophys. Res. Commun., 130, 1241–1246.PubMedCrossRefGoogle Scholar
  25. 25).
    Lew, R.R. (1989). Calcium activates an electrogenic proton pumps in Neurospora plasma membrane. Plant Physiol, 91, 213–216.PubMedCrossRefGoogle Scholar
  26. 26).
    Kauss, A. (1987). Some aspects of calcium-dependent regulation in plant metabolism. Ann. Rev. Plant Physiol., 38, 47–72.CrossRefGoogle Scholar
  27. 27).
    Moyen, C. & Roblin, G. (1989). Calcium involvement in the glycine uptake by leaf motor organs of Mimosa pudica. NATO Internat. Symposium, Signal perception and transduction in higher plants, Toulouse, Abstracts, A-13.Google Scholar
  28. 28).
    Schafer, A., Bygrave, F., Mathenauer, S. & Marme, D. (1985). Identification of a calcium-and phospholipid-dependent protein kinase in plant tissue. FEBS Letters, 187, 25–28.CrossRefGoogle Scholar
  29. 29).
    Harmon, A.C., Putnam-Evans, C. & Cormier, M.J. (1987). A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol., 83, 830–837.PubMedCrossRefGoogle Scholar
  30. 30).
    Boss, W.F. (1989). Phosphoinositide metabolism: Its relation to signal transduction in plants. In: “Second messengers in plant growth and development”. W.F. Boss & D.J. Morré, Eds. New York: Alan R. Liss, Inc., 29–56.Google Scholar
  31. 31).
    Igleasias, A. & Satter, R.L. (1983). H+ fluxes in excised Samanea motor tissue. I. Formation by light. Plant Physiol., 72, 564–569.CrossRefGoogle Scholar
  32. 32).
    Ranjeva, R., Carrasco, A., Boudet, A.M. (1988). Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells. FEBS Letters, 230(12), 137–141.CrossRefGoogle Scholar
  33. 33).
    Canut, H., Carrasco, A., Graziana, A., Boudet, A.M. & Ranjeva, R. (1989). Inositoltrisphosphate-stimulated calcium release from Acer microsomal fractions involves the uptake of potassium. FEBS Letters, 253(1,2), 173–177.CrossRefGoogle Scholar
  34. 34).
    Colombo, R., Cerana, R., Lado, P., Peres, A. (1989). Regulation by calcium of voltage-dependent tonoplast K+ channels. Plant Physiol. Biochem., 27(4), 557–562.Google Scholar
  35. 35).
    Satter, R.L & Moran, N. (1988). Ionic channels in plant cell membranes. Physiol. Plant., 72, 816–820.CrossRefGoogle Scholar
  36. 36).
    Hedrich R. & Schroeder, J.I. (1989). The physiology of ion channels and electrogenic pumps in higher plants. Ann. Rev. Plant Physiol, 40, 539–569.CrossRefGoogle Scholar
  37. 37).
    Moran, N., Ehrenstein, G., Iwasa, K., Mischke, CH., Bare, CH. & Satter, R.L. (1988). Potassium channels in motor cells of Samanea saman. A patch-clamp study. Plant Physiol, 88(33), 643–646.PubMedCrossRefGoogle Scholar
  38. 38).
    Tazawa, M., Shimmen, T. & Mimura, T. (1987). Membrane control in the Characeae. Ann. Rev. Plant Physiol., 38, 95–117.CrossRefGoogle Scholar
  39. 39).
    Zucker, C.A. & Satter, R.L. (1988). Use of ion-sensitive microelectrodes to measure light induced changes in K+ activity in the Samanea pulvinar apoplast. Plant Physiol, 86(4), suppl., 93.Google Scholar
  40. 40).
    Lee, Y. & Satter, R.L. (1989). Effects of white, blue, red light and darkness on pH of the apoplast in the Samanea pulvinus. Planta, 178, 31–40.CrossRefGoogle Scholar
  41. 41).
    Satter, R.L., Garber, R.C., Khairallah, L & Cheng, Y.S. (1982). Elemental analysis of freezedried thin section of Samanea motor organs: barriers to ion diffusion through the apoplast. J. Cell Biol, 95, 893–902.PubMedCrossRefGoogle Scholar
  42. 42).
    Roblin, G. & Fleurat-Lessard, P. (1987). Redistribution of potassium, chloride and calcium during the gravitropically induced movement of Mimosa pudica pulvinus. Planta, 170, 242–248.CrossRefGoogle Scholar
  43. 43).
    Everat-Boubouloux, A., Fleurat-Lessard, P. & Roblin, G. (1989). Auxin-induced pulvinar movement of Cassia fasciculata leaflets. NATO Internat. Symposium, Signal perception and transduction in higher plants, Toulouse, Abstracts, A-12.Google Scholar
  44. 44).
    Stoeckel, H. & Takeda, K. (1990). Are ions channels involved in the perception of stimuli and in signal transduction? New perspectives offered by the patch-clamp technique Intra-and intercellular communications in plants (B. Millet & H. Greppin, eds) (in press).Google Scholar
  45. 45).
    Roblin, G., Fleurat-Lessard, P. & Bonmort, J. (1988). Effects of calmodulin antagonists on the dark-and light-induced leaflet movements in Cassia fasciculata Michx. C.R. Acad. Sci., 306, sen II, 179–184.Google Scholar
  46. 46).
    Freudling, C., Starrach, N., Flach, D., Gradmann, D. & Mayer, W.E. (1988). Cell walls as reservoirs of potassium ions for reversible volume changes of pulvinar motor cells during rhythmic leaf movements. Planta, 175, 193–203.CrossRefGoogle Scholar
  47. 47).
    Starrach, N. & Mayer, W.E. (1989). Changes of the apoplastic pH and K+ concentration in the Phaseolus pulvinus in situ in relation to rhythmic leaf movements. J. exp. Bot., 40, n°217, 865–873.CrossRefGoogle Scholar
  48. 48).
    Degli Agosti, R., Blaise, M.-O., Millet, B. (1989). Redistributions du potassium dans le pulvinus secondaire de Phaseolus vulgaris L. au cours du mouvement foliaire circadien. Bot. Helvet, 99(2), 179–188.Google Scholar
  49. 49).
    Millet, B., Melin D. & P.-M. Badot (1987). Circumnutation: model for signal transduction. In: The cell surface in signal transduction. E. Wagner, H. Greppin, B. Millet eds., Springer-Verlag, Berlin, 169–179.CrossRefGoogle Scholar
  50. 50).
    Badot, P.-M. (1987). Approche cellulaire du mecanisme du mouvement revolutif des tiges volubiles. Etude de quelques paramètres physico-chimiques. Ann. Sci. Univ. Besancon, Biologie, 4ème sér. (8), 53–110.Google Scholar
  51. 51).
    Botton, A.M., Millet, B. & Mercier, J. (1989). Structure du pulvinus secondaire de Phaseolus vulgaris, L. au cours du mouvement foliaire circadien. Ann. sci. Univ. Besancon, Biologie-Ecologie, 5 (1), (in press).Google Scholar
  52. 52).
    Pickard, B.G. (1985). Roles of hormones, protons and calcium in geotropism. In: Encyclop. of Plant Physiol.: New Series (R.P. Pharis and D.M. Reid, eds), vol. 11, 193–281. Springer-Verlag, Berlin.Google Scholar
  53. 53).
    Moore R. & Evans, M.L (1986). How roots perceive and respond to gravity. Amer. J. Bot, 73(4), 574–587.CrossRefGoogle Scholar
  54. 54).
    Poovaiah, B.M., Reddy, A.S.N., Friedmann, M., Raghotama, K.G., MC Fadden, J.J., Chengappa, S. & Wang, Z.Q. (1988). The role of calcium in the transduction of light signal. Plant Physiol., 86(4), suppl. 67.Google Scholar
  55. 55).
    Falke, L., Edwards, K.L., Misler, S. & Pickard, B.G. (1986). A mechanotransductive ion Channel in patches from cultured tobacco cell plasmalemma. Plant Physiol., 80(4), 40.Google Scholar
  56. 56).
    Millet, B. & Pickard, B.G. (1988b). Gadolinium ion is an inhibitor suitable for testing the putative role of stretch-activated ion channels in geotropism and thigmotropism. Biophys. J., 53,155a.Google Scholar
  57. 57).
    Millet, B. & Pickard, B.G. (1988a). Early wrong-way response occur in orthogravitropism of maize roots treated with lithium. Physiol. Plant, 72, 555–559.PubMedCrossRefGoogle Scholar
  58. 58).
    Millet B. & Pickard, B.G. (1988c). Reproducible thigmotropic response by maize roots. Plant Physiol, 87 (4) (suppl n° 29).Google Scholar
  59. 59).
    Baillaud, L. (1967). Variations d3uni périodicité endogène normalement circadienne affectant le dégagement des entre-noeuds de la Bryone, Bryonia dioica, en fonction de facteurs agissant sur la vitesse de croissance. Z. Pflanzenphysiol, 57, 203–205.Google Scholar
  60. 60).
    De Jaegher, G. & Boyer, N. (1990). On the role of membranes and calcium in signal perception and transduction in thigmomorphogenesis of Bryonia dioica, Intra-and intercellular communications in plants (B. Millet & H. Greppin, eds.) (in press).Google Scholar
  61. 61).
    Cubizolles, L., DE Jaegher, G., Bourgeade, P, Motta, C. & Boyer, N. (1988). Use of fluorescence polarization for the study of membrane properties in mechanically stressed Bryonia dioica internodes. In: 6th Congress of F.E.S.P.P, Split, Abstracts, 501.Google Scholar
  62. 62).
    Jaffe, M. (1988). Calcium as a messenger in the thigmoperception of tendrile. Plant Physiol, 86(4), suppl, 41.Google Scholar
  63. 63).
    Davies, E. (1987). Action potentials as multifunctional signals in plants: a umfying hypothesis to explain apparently disperate wound responses. Plant, Cell and Environment, 10, 623–631.CrossRefGoogle Scholar
  64. 64).
    Meiners, S., Baron-Epel, D. & Schindler, M. (1988). Intercellular communication. Filling in the gaps. Plant Physiol, 88, 791–793.CrossRefGoogle Scholar
  65. 65).
    Minorsky, P.V. & Spanswick, R.M. (1989). Electrophysiological evidence for a role for calcium in temperature sensing by roots of Cucumber seedlings. Plant, Cell and Environment, 12, 137–143.CrossRefGoogle Scholar
  66. 66).
    Gaspar, TH., Moncousin, CH. & Greppin, H. (1990). The place and role of exogenous and endogenous auxin in adventitious root formation. Intra-and intercellular communications in plants (B. Millet & H. Greppin, eds.) (in press).Google Scholar
  67. 67).
    Desbiez M.-O. & Thellier, M. (1990). The Bidens plantlet: bilateral symmetry and possible breaking of the symmetry during bud growth. Intra-and intercellular communications in plants (B. Millet & H. Greppin, eds.) (in press).Google Scholar
  68. 68).
    Frachisse, J.-M. & Desbiez, M.-O. (1988). Extra-and intracellular measurement of the wave of electric depolarization induced by wounding in Bidens pilosus L In: 6th Congress of F.E.S.P.P., Book of abstracts, 540.Google Scholar
  69. 69).
    Desbiez, M.-O., Thellier, M. & Champagnat, P. (1987). Storage and retrieval of morphogenetic messages in plantlets of Bidens pilosus L. In: The cell surface and signal transduction (E. Wagner, H. Greppin and B. Millet, eds.) NATO ASI Series, Vol. H 12, Springer-Verlag, Berlin, 189–203.CrossRefGoogle Scholar
  70. 70).
    Candelier, P., Dauphin, G. & Gendraud, M. (1989). “In vivo” 31P nuclear magnetic resonance spectroscopy of different Helianthus tuberosus organs during vegetative cycle. Plant Physiol. Biochem., 27(2), 281–288.Google Scholar
  71. 71).
    Gendraud, M., & Petel, G. (1990). Modifications in intercellular communications cellular characteristics and change in morphogenetic potentialities of Jerusalem artichoke tubers (Helianthus tuberosus L) Intra-and intercellular communications in plants (B. Millet & H. Greppin, eds.) (in press).Google Scholar
  72. 72).
    Ruiz Fernandez, S. & Wagner, E. (1989). Flowering in Chenopodium rubrum: light control of stem elongation rate (S.E.R.) as systemic marker for flower induction. FLowering Newslett., 8, 15–19.Google Scholar
  73. 73).
    Bernier, G. (1988). The control of floral evocation and morphogenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol, 39, 175–219.CrossRefGoogle Scholar
  74. 74).
    Greppin, H., Bonson, M., Crespi, P., Crèvecoeur M., DEGLI-Agosti, R. & Penel, C. (1990). Physiological macrofunctions and indicators of the flowering process. Intra-and intercellular communications in plants (B. Millet & H. Greppin, eds.) (in press).Google Scholar
  75. 75).
    Penel, C., Auderset, G., Bernardini, N., Castillo, F.J., Greppin, H. & Morré, D.J. (1988). Compositional changes associated with plasma membrane thickening during floral induction of spinach. Physiol. Plant., 73, 134–146.CrossRefGoogle Scholar
  76. 76).
    Malatialy, L., Greppin, H. & Penel, C. (1988). Calcium uptake by tonoplast and plasma membrane vesicles from spinach leaves. FEBS Letters, 233(1), 196–200.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • B. Millet
    • 1
  1. 1.Botanical LaboratoryUniversity of Franche-ComteBesançon CedexFrance

Personalised recommendations