Advertisement

Phytotoxins and Plant Pathogenesis

  • A. Graniti
  • R. D. Durbin
  • A. Ballio
Part of the NATO ASI Series book series (volume 51)

Abstract

In a broad sense, “phytotoxins” can be considered as microbial metabolites, other than enzymes, that damage or are harmful to plants at very low concentrations (1–3, 23, 25). Many plant pathogenic bacteria and fungi produce phytotoxins both in culture and in their hosts during the infection process. In several cases — especially if they are produced during the early stages of plant disease development — these compounds have a function in pathogenesis and cause part or even all of the symptoms of the disease (4, 5, 20). For microbial products which are not phytotoxic per se but have a role in pathogenesis, the term aggressions has been proposed (1).

Keywords

Plant Disease Culture Filtrate Alternaria Alternata Japanese Pear Spotted Knapweed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Graniti, A. (1972). The evolution of the toxin concepts in plant pathology. In: Ref. 4:1–15.Google Scholar
  2. 2).
    Scheffer, R.P., Briggs, S.P. (1981). Introduction: a perspective of toxin studies in plant pathology. In. Ref. 5:1–20.Google Scholar
  3. 3).
    Turner, J.G., (1984). Role of toxins in plant disease. In: Plant diseases: infection. (Wood, R.K.S., Jellis, GJ.,eds), Blackwell, Oxford, pp.3–12.Google Scholar
  4. 4).
    Wood R.K.S, Ballio, A., Graniti, A. (ed.) (1972). Phytotoxins in plant diseases. Academic Press, London, 530 p.Google Scholar
  5. 5).
    Durbin, R.D. (ed.) (1981). Toxins in plant diseases. Academic Press, New York, 515 p.Google Scholar
  6. 6).
    Scheffer, R.P., Yoder, O.C. (1972). Host specific toxins and selective toxicity. In: Ref. 4: 251–269.Google Scholar
  7. 7).
    Kono, Y, Knoche, H.W., Daly, J.M. (1981). Structure: fungal host-specific. In: Ref. 5: 221–257.Google Scholar
  8. 8).
    Wheeler, H. (1976). The role of phytotoxins in specificity. In: Specificity in plant diseases. (Wood, R.K.S., Graniti, A., eds.), Plenum Press, New York, pp. 217–235.Google Scholar
  9. 9).
    Daly J. M., Kono Y., Suzuki, Y., Knoche, H.W. (1983). Biological activities and structures of host-selective pathotoxins. In: IUPAC Pesticide Chemistry. (Miyamoto, J., ed.), Pergamon Press, New York, p. 11.Google Scholar
  10. 10).
    Kohmoto, K., Durbin, R.D. (ed.) (1989). Host-specific toxins: recognition and specificity factors in plant disease. Tattori University, Tattori, Japan, 230 p.Google Scholar
  11. 11).
    Gäumann, E. (1950). Principles of plant infection. Crosby Lockwood, London, 543 p.Google Scholar
  12. 12).
    Gäumann, E. (1954). Toxins and plant diseases. Endeavor 13: 198–204.Google Scholar
  13. 13).
    Rudolph, K. (1976). Non-specific toxins. In: Physiological plant pathology. (Heitefuss, R., Williams, P.H., eds), Encyclopedia of Plant Physiology, Vol. 4, Springer-Verlag, Berlin, pp. 270–315.CrossRefGoogle Scholar
  14. 14).
    Strobel, G.A. (1977). Bacterial phytotoxins. Annu. Rev. Microbiol. 31: 205–224.PubMedCrossRefGoogle Scholar
  15. 15).
    Friend, J. (1977). Biochemistry of plant pathogens. In: Plant Biochemistry II. International Review of Biochemistry, Vol. 13. (Northcote, D.H., ed.), University Park Press, Baltimore, p. 151–155.Google Scholar
  16. 16).
    Yoder, O.C. (1980). Toxins in pathogenesis. Annu. Rev. Phytopathol. 18: 103–129.CrossRefGoogle Scholar
  17. 17).
    Staples, R.C., Toenniessen, G.H. (ed.) (1981). Plant disease control. Resistance and susceptibility. J. Wiley, New York, 339 p.Google Scholar
  18. 18).
    Daly, J.M., Knoche, H.W (1982). The chemistry and biology of pathotoxins exhibiting host-selectivity. Adv. Plant Pathology 1: 84–138.Google Scholar
  19. 19).
    Daly, J.M., Deverall, B.J. (ed.) (1983). Toxins and plant pathogenesis. Academic Press, New York, 181 p.Google Scholar
  20. 20).
    Durbin Rd (1983). The biochemistry of fungal and bacterial toxins and their modes of action. In: Biochemical Plant Pathology. (Callow, J.A., ed.), Wiley, Chichester, p. 137–162.Google Scholar
  21. 21).
    Michell, R.E. (1984). The relevance of non-host-specific toxins in the expression of virulence by pathogens. Annu. Rev. Phytopathol. 22: 215–245.CrossRefGoogle Scholar
  22. 22).
    Scheffer, R.P., Livingston, R.S. (1984). Host-selective toxins and their role in plant diseases. Science 223: 17–21.PubMedCrossRefGoogle Scholar
  23. 23).
    Goodman, R.N. Kiraly, Z., Wood, K.R. (1986). The biochemistry and physiology of plant disease. Univ. Missouri PREss, Columbia, 433 p.Google Scholar
  24. 24).
    Nishimura, S., Vance, C.P., Doke, N. (ed.) (1987). Molecular determinants of plant diseases. Japan Sci. Societies Press, Tokyo — Springer-Verlag, Berlin, 293 p.Google Scholar
  25. 25).
    Misaghi, I.J. (1982). Physiology and biochemistry of plant-pathogen interactions. Plenum Press, New York, 387 p.Google Scholar
  26. 26).
    Graniti, A., Durbin, R.D., Ballio, A. (ed.) (1989). Phytotoxins and plant pathogenesis. Springer-Verlag, Berlin, 508 p.CrossRefGoogle Scholar
  27. 27).
    Anzai, H., Yoneyama, K., Yamaquchi, I. (1990). Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin. Mol. Gen. Genet (in press).Google Scholar
  28. 28).
    Wood, R.K.S. (1989). Toxins and diseases resistance. In: Ref. 26, p. 267–273.Google Scholar
  29. 29).
    Bailey, J.A., O’Connell, R.J. (1989). Plant cell death: a determinant of disease resistance and susceptibility. In: Ref. 26, p. 275–283.CrossRefGoogle Scholar
  30. 30).
    Kohmoto, K., Otani, H., Kodama, M., Nishimura, S. (1989). Host recognition: can accessibility to fungal invasion be induced by host-specific toxins without necessitating necrotic cell death? In: Ref. 26, p. 249–265.Google Scholar
  31. 31).
    Hayami, C., Otani, H., Nishimura, S., Kohmoto, K. (1982). Induced resistance in pear leaves by spore germination fluids of non pathogens to Altemaria altemata, Japanese pear pathotype, and suppression of the induction by AK toxin. J. Fac. Agric, Tottori Univ. 17: 9–18.Google Scholar
  32. 32).
    Scheffer, R.P. (1989). Host-specific toxins in phytopathology: origin and evolution of the concept. In: Ref. 10, p. 1–17.Google Scholar
  33. 33).
    Nishimura, S., Nakatsuka, S. (1989). Trends in host-selective toxin research in Japan. In: Ref. 10, p. 19–31.Google Scholar
  34. 34).
    Mitchell, R.E. (1989). Current research into chemical synthesis of phaseolotoxin. In: Ref. 26, p. 1–6.Google Scholar
  35. 35).
    Mitchell, R.E. (1989). Biosynthesis and regulation of toxins produced by Pseudomonas syringae pv. glycineas (coronatine) and Pseudomonas andropogonis (rhizobitoxine). In: Ref. 26, p. 23–29.Google Scholar
  36. 36).
    Mitchell, R.E. (1989). Biosynthesis of rhizobitoxine from L-aspartic acid and L-threo-hydro-xythreonine by Pseudomonas andropogonis. Phytochemistry 28: 1617–1620.CrossRefGoogle Scholar
  37. 37).
    Surico, G., Lavermicocca, P., Iacobellis, N.S. (1989). Syringomycin and syringotoxin production in cultures of Pseudomonas syringae pv. syringae. In: Ref. 26, p. 469–471.Google Scholar
  38. 38).
    Ballio, A., Barra, D., Bossa, R., Devay, J.E., Grgurina, I. Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., Surico, G. (1988). Occurrence of multiple forms of syringomycin. In: Ref. 26, p. 363–366.Google Scholar
  39. 39).
    Ballio, A, Barra, D., Bossa, F., Devay, J.E., Grgurina, I. Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., Surico, G. (1988). Multiple forms of syringomycin. Physio. Mol. Plant Pathol. 33: 493–496.CrossRefGoogle Scholar
  40. 40).
    Bachmann, R.C., Takemoto, J.Y (1989). Structure of syringomycin. A progress report. In: Ref. 26, p. 259–361.Google Scholar
  41. 41).
    Segre, A., Ballio, A., Barra, D., Bossa, F., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., Surico, G. (1989). Structural studies on syringomycin. In: Ref. 26, p. 367–369.Google Scholar
  42. 42).
    Segre, A., Bachmann, R.C., Ballio, A., Bossa, F., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., Takemoto, J.Y. (1989). The structure of syringomycins A. F. and G. FEBS Lett 255: 27–31.CrossRefGoogle Scholar
  43. 43).
    Iacobellis, N.S., Lavermicocca, P., Surico, G., Durbin, R.D. (1989). Occurrence of a syringomycin-high molecular weight complex in Pseudomonas syringae pv. syringae. In: Ref. 26, p. 429–431.Google Scholar
  44. 44).
    Takemoto, J.Y., Giannini, J.L., Vassey, T., Briskin, DP. (1989). Syringomycin effects on plasma membrane Ca+2 transport. In: Ref. 26, p. 167–175.Google Scholar
  45. 45).
    Reidl, H.H., Grover, TA, Takemoto, J.Y. (1989). 31P-NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae. Biochim Biophys. Acta 1010: 325–329.PubMedCrossRefGoogle Scholar
  46. 46).
    Mott, K.A., Takemoto, J.Y. (1989). Syringomycin, a bacterial phytotoxin, closes stomata. Plant. Physiol. 90:1435–1439.PubMedCrossRefGoogle Scholar
  47. 47).
    Kenfield, D., Bunkers, G. Strobel, G., Sugawara, F. (1989). Fungal phytotoxins — potential new herbicides. In: Ref. 26, p. 319–335.Google Scholar
  48. 48).
    Yun, C.-H., Sugawara, F., Strobel, G.A. (1988). The phytotoxic ophiobolins produced by Drechslera oryzae, their structures and biological activity on rice. Plant Sci. 54: 237–243.CrossRefGoogle Scholar
  49. 49).
    Sugawara, F., Takahashi, N., Strobel, G., Yun, C.-H., Gray, G., Fu, Y., Clardy, J. (1988). Some new phytotoxic ophiobolins produced by Drechslera oryzae. J. Org. Chem. 53: 2170–2172.CrossRefGoogle Scholar
  50. 50).
    Hallock, Y.F., Clardy, J., Kenfield, D.S., Strobel, G. (1988). De-O-methyl diaporthin, a phytotoxin from Drechslera siccans. Phytochemistry 27: 3123–3125.CrossRefGoogle Scholar
  51. 51).
    Sugawara, F., Takahashi, N., Strobel, G.A., Strobel, S.A., Lu, H.S.M., Clardy, J. (1988). Tritocones A and B, novel phytotoxins from the plant pathogenic fungus Drechslera triticirepentis. J. Am. Chem. Soc. 110: 4086.CrossRefGoogle Scholar
  52. 52).
    Kenfield, D., Strobel, S., Sugawara, F., Berglund, D. Strobel, G. (1988). Triticone A: a novel bioactive lactam with potential as a molecular probe. Biochem. Biophys. Comm. 157:174–182.CrossRefGoogle Scholar
  53. 53).
    Stierle, A.C., Cardellina II, J.H., Strobel, G.A. (1989). Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria altemata. Proc. Natl. Acad. Sci. 85: 8008–8011.CrossRefGoogle Scholar
  54. 54).
    Stierle, A.C., Cardellina II, J.H. Strobel, G.A. (1989). Phytotoxins from Alternaria alternata, a pathogen of spotted knapweed. J. Nat. Prod. 52: 42–47.CrossRefGoogle Scholar
  55. 55).
    Pena-Rodriguez, L.M., Armingeon, N.A., Chilton, W.S. (1988). Toxins from weed pathogens, I. Phytotoxins from a Bipolaris pathogen of Johnson grass. J. Nat. Prod. 51:821–828.PubMedCrossRefGoogle Scholar
  56. 56).
    Kono, Y. (1989). Structural studies on host-specific phytotoxins in corn blight and citrus brown spot disease. In: Ref. 26, p. 7–21.Google Scholar
  57. 57).
    Suzuki, Y., Danko, S.J., Kono, Y., Daly, J.M., Knoche, H.W., Takeuchi, S. (1988). Studies on the conformations of PM-toxin, the host-specific corn pathotoxin produced by Phyllosticta maydis. Agric. Biol. Chem. 52: 15–24.CrossRefGoogle Scholar
  58. 58).
    Suzuki, Y., Danko, S.J., Kono, Y., Daly, J.M., Knoche, H.W., Takeuchi, S. (1989). Synthesis and biological activity of a new type of PM-toxin analogue containing oxygen atoms in the carbonchain skeleton. Agric Biol. Chem. 53: 453–459.CrossRefGoogle Scholar
  59. 59).
    Macko, V., Wolpert, T.J., Acklin, W, Arigoni, D. (1989). Biological activities of structural variants of host-selective toxins from Cochliobolus victoriae. In: Ref. 26, p. 31–41.Google Scholar
  60. 60).
    Wolpert, T.J., Macko, V., Acklin, W, Arigoni, D. (1988). Molecular features affecting the biological activity of the host-selective toxins from Cochliobolus victoriae. Plant Physiol. 88: 37–41.PubMedCrossRefGoogle Scholar
  61. 61).
    Wolpert, T.J., Macko, V. (1989). Specific binding of victorin to a 100-kDa protein from oats. Proc. Nat. Acad. Sci. 86: 4092–4096.PubMedCrossRefGoogle Scholar
  62. 62).
    Kinoshita, T., Kono, Y., Takeuchi, S., Daly, J.M. (1989). Structure of HV-toxin M., a host-specific toxin-related compound produced by Helminthosporium victoriae. Agric Biol. Chem. 53:1283–1290.CrossRefGoogle Scholar
  63. 63).
    Rasmussen, J.B., Scheffer, R.P. (1988). Isolation and biological activities of four selective toxins from Helminthosporium carbonum. Plant Physiol. 86: 187–191.PubMedCrossRefGoogle Scholar
  64. 64).
    Shukla R.S., Agrawal, P.K., Thakur, R.S., Husain, A. (1989). Drechserol-B, a host-selective phytotoxin produced by Drechslera maydis. Phytochemistry 28: 2089–2091.CrossRefGoogle Scholar
  65. 65).
    Marre, E., Marre, MT, Romani, G. (1989). Action of fusicoccin in vivo: physiological and biochemical consequences. In: Ref. 26, p. 131–141.Google Scholar
  66. 66).
    Aducci, P., Ballio, A. (1989). Mode of action of fusicoccin: the role of specific receptors. In: Ref. 26, p. 143–150.Google Scholar
  67. 67).
    Feyerabend, M., Weiler, E.W. (1988). Characterization and localization of fusicoccin-binding sites in leaf tissues of Vicia faba L probed with a novel radioligand. Planta 174: 115–122.CrossRefGoogle Scholar
  68. 68).
    Stout, R.G. (1988). Fusicoccin activity and binding in Arabidopsis thaliana. Plant Physiol. 88: 999–1001.PubMedCrossRefGoogle Scholar
  69. 69).
    Meyer, C., Feyerabend, M., Weiler, E.W. (1989). Fusicoccin-binding proteins in Arabidopsis thaliana (L) Heynh. Characterization, solubilization and photoaffinity labeling. Plant Physiol. 89: 692–699.PubMedCrossRefGoogle Scholar
  70. 70).
    De Michelis, M.I., Pugliarello, M.C., Rasi-Caldogno, F. (1989). Fusicoccin binding to its plasma membrane receptors and the activation of the plasma membrane H+-ATPase. I. Characteristics and intracellular localization of the fusicoccin receptor in microsomes from radish seedlings. Plant Physiol. 90: 133–139.PubMedCrossRefGoogle Scholar
  71. 71).
    De Boer, A.H., Watson, B.A., Cleland, R.E. (1989). Purifications and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiol. 89: 250–259.PubMedCrossRefGoogle Scholar
  72. 72).
    Feyerabend, M., Weiler E.W. (1989). Photoaffinity labeling and partial purification of the putative plant receptor for the fungal wilt-inducing toxin, fusicoccin. Planta 178: 282–290.CrossRefGoogle Scholar
  73. 73).
    Rasi-Caldogno, F., De Michelis, M.I., Pugliarello, M.C. (1989). Fusicoccin-receptor. Interaction and activation of plasma-membrane H+-ATPase in native membrane vesicles. In: Ref. 26, p. 123–129.Google Scholar
  74. 74).
    Blum, W., Key, G., Weiler, E.W. (1988). ATPase activity in plasmalemma-rich vesicles isolated by aqueous two-phase partitioning from Vicia faba, mesophyll and epidermis: Characterization and influence of abscisic acid and fusicoccin. Physiol. Plant 72: 279–287.CrossRefGoogle Scholar
  75. 75).
    Aducci, P., Ballio, A., Blein, J.-P., Fullone, M.R., Rossignol, M., Scalla, R. (1989). Functional reconstitution of a proton-translocating system responsive to fusicoccin. Proc. Natl. Acad. sci. 85: 7849–7851.CrossRefGoogle Scholar
  76. 76).
    Marra, M., Aducci, P., Ballio, A. (1989). Immunoaffinity chromatography of endogenous ligands for fusicoccin binding sites. In: Ref. 26, p. 357–358.Google Scholar
  77. 77).
    Marra, M., Ballio, A., Aducci, P. (1988). Immunoaffinity Chromatograph of fusicoccin. J. Chromatogr. 440: 47–51.CrossRefGoogle Scholar
  78. 78).
    Thuleau, P., Graziana, A., Rossignol, M., Kauss, H., Auriol, P., Ranjeva, R. (1988). Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc. Natl. Acad. Sci. 85: 5932–5935.PubMedCrossRefGoogle Scholar
  79. 79).
    Novacky, A., Ullrich-Eberius, C.I., Ball, E. (1989). Interactions of phytotoxins with plant cell membranes: electrophysiology and ion flux-induced pH changes. In: Ref. 26, p. 151–166.Google Scholar
  80. 80).
    Alam, S.S., Sirange, R.N. (1989). Isolation and properties of two toxins from culture filtrates Ascochyta rabiei. In: Ref. 26, p. 385–386.Google Scholar
  81. 81).
    Kurzyca, H.P., Friend, J. (1989). Leaf spotting toxins from Septoria nodorum. In: Ref. 26, p. 387–388.Google Scholar
  82. 82).
    Genetet, I., Pinon, J., Bodo, B., Rebuffat, S. (1989). Hypoxylon mammatum toxins. Their nature and their role in host parasite relationships. In: Ref. 26, p. 389–391.Google Scholar
  83. 83).
    Durbin, R.D. (1981). Applications. In: Ref. 5, p. 495–505.Google Scholar
  84. 84).
    Durbin, R.D., Graniti, A. (1989). Possible applications of phytotoxins. In: Ref. 26, p. 337–355.Google Scholar
  85. 85).
    Van Alfen, N.K. (1989). Reassessment of plant wilt toxins. Annu. Rev. Phytopathol. 27: 533–550.CrossRefGoogle Scholar
  86. 86).
    Graniti, A. (1989). Fusicoccin and stomatal transpiration. In: Ref. 10, p. 143–152.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. Graniti
    • 1
  • R. D. Durbin
    • 2
  • A. Ballio
    • 3
  1. 1.Dipartimento di Patologia vegetaleUniversita di BariBariItaly
  2. 2.ARS/USDA and Department of Plant PathologyUniversity of WisconsinMadisonUSA
  3. 3.Departimento di Scienze biochimicheUniversita ‘La Sapienza’RomeItaly

Personalised recommendations