Advertisement

Structures of Red Blood Cell Hemoglobins

  • W. E. RoyerJr.
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 13)

Abstract

This review will deal with red blood cell hemoglobins from the lower invertebrates to mammals. In preparing this chapter, I drew heavily on two excellent reviews (Terwilliger 1980; Terwilliger and Terwilliger 1985) that have put the subject of invertebrate hemoglobins in perspective. As will become apparent, Robert Terwilliger and his wife, Nora Terwilliger, have made a great many seminal contributions to our understanding of the diversity of hemoglobins in the animal kingdom. Bob Terwilliger will be sorely missed.

Keywords

Oxygen Affinity Human Hemoglobin Heme Pocket Bohr Effect Root Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi A, Wells RMG, Brittain T, Braunitzer G (1988) Primary structure of the hemoglobins from sphenodon (Sphenodon punctatus, Tuatara, Rynchocephalia). Biol Chem Hoppe Seyler 369: 755–764PubMedGoogle Scholar
  2. Ackers GK (1980) Energetics of subunit assembly and ligand binding in human hemoglobin. Biophys J 32: 331–346PubMedGoogle Scholar
  3. Andersen ME, Gibson QH (1971) A kinetic analysis of the binding of oxygen and carbon monoxide to lamprey hemoglobin. J Biol Chem 246: 4790–4799PubMedGoogle Scholar
  4. Arents G, Love WE (1989) Glycera dibranchiata hemoglobin: structure and refinement at 1.5 Å resolution. J Mol Biol 210: 149–161PubMedGoogle Scholar
  5. Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxy hemoglobin. Nature (London) 237: 146–149Google Scholar
  6. Arnone A (1974) X-ray studies of the interaction of CO2 with human deoxyhemoglobin. Nature (London) 247: 143–145Google Scholar
  7. Arutyunyan EG, Kuranova IP, Vainshtein BK, Steigemann W (1980) X-ray structural investigation of leghemoglobin/VI. Structure of acetate-ferrileghemoglobin at a resolution of 2.0 Ångstroms. Sov Phys Crystallogr 25(1): 43–58Google Scholar
  8. Bardack D, Zangerl R (1968) First fossil lamprey: a record from the Pennsylvanian of Illinois. Science 162: 1265–1267PubMedGoogle Scholar
  9. Barra D, Petruzzelli R, Bossa F, Brunori M (1983) Primary structure of hemoglobin from trout (Salmo irideus): amino acid sequence of the ß chain of trout Hb I. Biochim Biophys Acta 742: 72–77PubMedGoogle Scholar
  10. Bauer C, Forster M, Gros G, Mosca A, Perrella M, Rollema HS, Vogel D (1981) Analysis of bicarbonate binding to crocodilian hemoglobin. J Biol Chem 256: 8429– 8435PubMedGoogle Scholar
  11. Benesch R, Benesch RE (1974a) Homos and heteros among the hemos. Science 185: 905–908PubMedGoogle Scholar
  12. Benesch RE, Benesch R (1974b) The mechanism of interaction of red cell organic phosphates with hemoglobin. Adv Protein Chem 28: 211–237PubMedGoogle Scholar
  13. Bolognesi M, Onesti S, Gatti B, Coda A, Ascenzi P, Brunori M (1989) Aplysia limacina Myoglobin. Crystallographic analysis at 1.6 Å resolution. J Mol Biol 205: 529–544PubMedGoogle Scholar
  14. Bonaventura C, Bonaventura J, Kitto B, Brunori M, Antonini E (1976) Functional consequences of ligand-linked dissociation in hemoglobins from the sea cucumber Molpadia arenicola. Biochim Biophys Acta 428: 779–786PubMedGoogle Scholar
  15. Bonaventura C, Sullivan B, Bonaventura J, Bourne S (1977) Anion modulation of negative Bohr effect of hemoglobin from a primitive amphibian. Nature (London) 265: 474–476Google Scholar
  16. Bonaventura J, Kitto GB (1973) Ligand-linked dissociation of some invertebrate hemoglobins. In: Bolis L, Schmidt-Nielsen K, Maddrell HP (eds) Comparative physiology. North-Holland, Amsterdam, pp 493–507Google Scholar
  17. Bonner AG, Laursen RA (1977) The amino acid sequence of a dimeric myoglobin from the gastropod mollusc, Busycon canaliculatum L. FEBS Lett 73: 201–203PubMedGoogle Scholar
  18. Borgese TA, Harrington JP, Hoffman D, San George RC, Nagel RL (1987) Anadara ovalis hemoglobins: distinct dissociation and ligand binding characteristics. Comp Biochem Physiol 86B: 155–165Google Scholar
  19. Braden BC, Love WE, Royer WE Jr (1990) The 3.0Å structure of the tetrameric hemoglobin from the blood clam Scapharca inaequivalvis. In: Preaux G, Lontie R (eds) Invertebrate di-oxygen carriers. Leuven University Press, Leuven, pp 177–182Google Scholar
  20. Braunitzer G, Gehring-Müller R, Hilshmann N, Hilse Kl, Hobam G, Rudloff V, Wittman-Liebold B (1961) Die Konstitution des normalen adulten Humanhaemo- globins. Hoppe-Seylers Z Physiol Chem 325: 283–286PubMedGoogle Scholar
  21. Bridges CR, Pelster B, Scheid P (1985) Oxygen binding in blood of Xenopus laevis (amphibia) and evidence against Root effect. Respir Physiol 61: 125–136PubMedGoogle Scholar
  22. Briehl RW (1963) The relation between the oxygen equilibrium and aggregation of subunits in lamprey hemoglobin. J Biol Chem 238: 2361–2366Google Scholar
  23. Brittain T (1987) The Root effect. Comp Biochem Physiol 86B: 473–481Google Scholar
  24. Brunori M (1975) Molecular adaptation to physiological requirements: the hemoglobin system of trout. Curr Top Cell Regul 9: 1–39PubMedGoogle Scholar
  25. Bucci E, Fronticelli C (1985) Anion Bohr effect of human hemoglobin. Biochemistry 24: 371–376PubMedGoogle Scholar
  26. Bunn HF (1971) Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins. Science 172: 1049–1050PubMedGoogle Scholar
  27. Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. Saunders, PhiladelphiaGoogle Scholar
  28. Carson WM, Bowers TR, Kitto GB, Hackert ML (1979) Preliminary crystallographic data on monomeric and dimeric hemoglobins from the sea cucumber, Molpadia arenicola. J Biol Chem 254: 7400–7402PubMedGoogle Scholar
  29. Chiancone E, Vecchini P, Verzili D, Ascoli F, Antonini E (1981) Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis: structural and functional properties. J Mol Biol 152: 577–592PubMedGoogle Scholar
  30. Chu AH, Ackers GK (1981) Mutual effects of protons, NaCl, and oxygen on the dimertetramer assembly of human hemoglobin. J Biol Chem 256: 1199–1205PubMedGoogle Scholar
  31. Collman JP, Brauman JI, Halbert TR, Suslick KS (1976) Nature of O2 and CO binding to metallopophyrins and heme proteins. Proc Natl Acad Sci USA 73: 3333–3337PubMedGoogle Scholar
  32. Colosimo A, Brunori M, Wyman J (1976) Polysteric linkage. J Mol Biol 100: 47–57PubMedGoogle Scholar
  33. Como PF, Thompson EOP (1980a) Multiple hemoglobins of the bivalve mollusc Anadara trapezia. Aust J Biol Sci 33: 643–652Google Scholar
  34. Como PF, Thompson EOP (1980b) Amino acid sequence of the α-chain of the bivalve mollusc Anadara trapezia. Aust J Biol Sci 33: 653–664Google Scholar
  35. Cooke RM, Wright PE (1985a) Differences in amino acid composition and heme electronic structure of the multiple monomeric hemoglobin components of Glycera dibranchiata. Biochim Biophys Acta 832: 357–364Google Scholar
  36. Cooke RM, Wright PE (1985b) Heme orientation in major monomeric hemoglobins of Glycera dibranchiata. Biochim Biophys Acta 832: 365–372Google Scholar
  37. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology. Benjamin/Cummings, Menlo ParkGoogle Scholar
  38. Djangmah JS, Gabbott PA, Wood EJ (1978) Physico-chemical characteristics and oxygen- binding properties of the multiple hemoglobins of the west African blood clam Anadara senili (L). Comp Biochem Physiol 60B: 245–250Google Scholar
  39. Fantl WJ, Di Donato A, Manning JM, Rogers PH, Arnone A (1987) Specifically carboxymethylated hemoglobin as an analogue of carbamino hemoglobin: solution and X-ray studies of carboxymethylated hemoglobin and X-ray studies of carbamino hemoglobin. J Biol Chem 26: 12700–12713Google Scholar
  40. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhemoglobin at 1.74 Å resolution. J Mol Biol 175: 159–174PubMedGoogle Scholar
  41. Focesi A Jr, Ogo SH, Matsuura MSA (1990) Dimer-tetramer transition in hemoglobins from Liophis miliaris. II. Evidence with the stripped proteins. Comp Biochem Physiol 96B: 119–122Google Scholar
  42. Freadman MA, Mangum CP (1976) The function of hemoglobin in the arcid clam Noetia ponderosa. I. Oxygenation in vitro and in vivo. Comp Biochem Physiol 53A: 173–179Google Scholar
  43. Frier JA, Perutz MF (1977) Structure of human fetal deoxyhemoglobin. J Mol Biol 112: 97–112PubMedGoogle Scholar
  44. Fronticelli C (1990) A possible new mechanism of oxygen affinity modulation in mammalian hemoglobins. Biophys Chem 37: 141–146PubMedGoogle Scholar
  45. Fronticelli C, Bucci E, Razynska A (1988) Modulation of oxygen affinity in hemoglobin by solvent components: interaction of bovine hemoglobin with 2,3-diphosphoglycerate and monatomic anions. J Mol Biol 202: 343–348PubMedGoogle Scholar
  46. Furuta H, Kajita A (1983) Dimeric hemoglobin of the bivalve mollusc Anadara broughtonii: complete amino acid sequence of the globin chain. Biochemistry 22: 917–922PubMedGoogle Scholar
  47. Furuta H, Ohe M, Kajita A (1977) Subunit structure of hemoglobins from erythrocytes of the blood clam, Anadara broughtonii. J Biochem 82: 1723–1730PubMedGoogle Scholar
  48. Garey JR, Riggs AF (1984) Structure and function of hemoglobin from Urechis caupo. Arch Biochem Biophys 228: 320–318PubMedGoogle Scholar
  49. Garey JR, Riggs AF (1986) The hemoglobin of Urechis caupo: the cDNA derived amino acid sequence. J Biol Chem 261: 16446–16450PubMedGoogle Scholar
  50. Garlick RL, Williams BJ, Riggs AF (1979) The hemoglobins of Phoronopsis viridis, of the primitive invertebrate phylum Phoronida: characterization and subunit structure. Arch Biochem Biophys 194: 13–23PubMedGoogle Scholar
  51. Geraci G, Sada A, Cirotto C (1977) Cooperative, low-molecular-weight dimeric myoglobins from the radular muscle of the gastropod mollusc Nassa mutabilis L. Eur J Biochem 77: 555–560PubMedGoogle Scholar
  52. Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of hemoglobin. Nature (London) 253: 603–608Google Scholar
  53. Grinich NP, Terwilliger RC (1980) The quaternary structure of an unusual high- molecular-weight intracellular hemoglobin from the bivalve mollusc Barbatia reeveana. Biochem J 189: 1–8PubMedGoogle Scholar
  54. Hall RE, Terwilliger RC, Terwilliger NB (1981) Hemoglobins and myoglobin of the echurian Urechis caupo (Fisher and Macginitie). Comp Biochem Physiol 70B: 353–357Google Scholar
  55. Harrington JP, Suarez G, Borgese TA, Nagel RL (1978) Subunit interactions of Glycera dibranchiata hemoglobin. J Biol Chem 253: 6820–6825PubMedGoogle Scholar
  56. Hendrickson WA (1973) Structural effects accompanying ligand change in crystalline lamprey hemoglobin. Biochim Biophys Acta 310: 32–38PubMedGoogle Scholar
  57. Hendrickson WA, Love WE, Murray GC (1968) Crystal forms of lamprey hemoglobin and crystalline transitions between ligand states. J Biol Chem 33: 829–842Google Scholar
  58. Hendrickson WA, Love WE (1971) Structure of lamprey hemoglobin. Nature New Biol 232: 197–203PubMedGoogle Scholar
  59. Honzatko RB, Hendrickson WA (1986) Molecular models for the putative dimer of sea lamprey hemoglobin. Proc Natl Acad Sci USA 83: 8487–8491PubMedGoogle Scholar
  60. Honzatko RB, Hendrickson WA, Love WE (1985) Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus. J Mol Biol 184: 147–164PubMedGoogle Scholar
  61. Hyman LH (1959) The invertebrates, vol V McGraw-Hill, New YorkGoogle Scholar
  62. Isaacks RE, Harkness DR (1975) 2,3-Diphosphoglycerate in erythrocytes of chick embryos. Science 189: 393–394PubMedGoogle Scholar
  63. Isaacks RE, Harkness DR, White JR (1982) Regulation of hemoglobin function and whole blood oxygen affinity by carbon dioxide and pH in the loggerhead (Caretta caretta) and green sea turtle (Chelonia mydas my das). Hemoglobin 6: 549–568PubMedGoogle Scholar
  64. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A threedimensional model of the myoglobin molecule obtained by X-ray analysis. Nature (London) 181: 662–666Google Scholar
  65. Kilmartin JV (1976) Interaction of hemoglobin with protons, CO2 and 2,3-diphosphoglycerate. Br Med Bull 32: 209–212PubMedGoogle Scholar
  66. Kilmartin JV, Rossi-Bernardi L (1973) Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphate. Physiol Rev 53: 836–890PubMedGoogle Scholar
  67. Kilmartin JV, Wootton JF (1970) Inhibition of Bohr effect after removal of C-terminal histidines from hemoglobin β-chains. Nature (London) 228: 766–767Google Scholar
  68. Kolatkar PR, Meador WE, Stanfield RL, Hackert ML (1988) Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo. J Biol Chem 263: 3462–3465PubMedGoogle Scholar
  69. Kolatkar PR, Ernst SR, Xu W-X, Meador WE, Hackert ML (1989) Structural comparisons of invertebrate hemoglobins. Am Cryst Assoc Abs 17: 115Google Scholar
  70. Leclercq F, Schnek AG, Braunitzer G, Stangl A, Schrank B (1981) Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate: sequence of the hemoglobins of the caiman (Caiman crocodylus), the nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis). Hoppe-Seylers Z Physiol Chem 362: 1151–1158Google Scholar
  71. Li SL, Riggs A (1970) The amino acid sequence of hemoglobin V from the lamprey, Petromyzon marinus. J Biol Chem 245: 6149–6169PubMedGoogle Scholar
  72. Luisi BF, Nagai K (1986) Crystallographic analysis of mutant human hemoglobins made in Escherichia coli. Nature (London) 320: 555–556Google Scholar
  73. Mangum CP, Woodin BR, Bonaventura C, Sullivan B, Bonaventura J (1975) The role of coelomic and vascular hemoglobin in the annelid family Terebellidae. Comp Biochem Physiol 51A: 281–294Google Scholar
  74. Mangum CP, Terwilliger RL, Terwilliger NB, Hall R (1983) Oxygen binding intact coelomic cells and extracted hemoglobin of echiurian Urechis caupo. Comp Biochem Physiol 76A: 253–257Google Scholar
  75. Mangum CP, Colacino JM, Vandergon TL (1989) Oxygen binding of single red blood cells of the annelid bloodworm Glycera dibranchiata. J Exp Zool 249: 144–149Google Scholar
  76. Matsuura MSA, Ogo SH, Focesi A Jr (1987) Dimer-tetramer transition in hemoglobins from Liophis miliaris. I. Effect of organic polyphosphates. Comp Biochem Physiol 86A: 683–687Google Scholar
  77. Matsuura MSA, Fushitani K, Riggs AF (1989) The amino acid sequences of the a and ß chains from hemoglobin from the snake, Liophis miliaris. J Biol Chem 264: 5515–5521PubMedGoogle Scholar
  78. Mills RC, Johnson ML, Ackers GK (1976) Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry 15: 5350–5362PubMedGoogle Scholar
  79. Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118PubMedGoogle Scholar
  80. Nagai K, Perutz MF, Poyart C (1985) Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci USA 82: 7252–7255PubMedGoogle Scholar
  81. Ohnoki S, Mitomi Y, Hata R, Satake K (1973) Heterogeneity of hemoglobin from arca (Anadara satowi): molecular weights and oxygen equilibria of arca Hb1 and II. J Biochem 73: 717–725Google Scholar
  82. Padlan EA, Love WE (1974) Three-dimensional structure of hemoglobin from the polychaete annelid Glycera dibranchiata at 2.5 Å resolution. J Biol Chem 249: 4067– 4078PubMedGoogle Scholar
  83. Perutz MF (1970) Stereochemistry of cooperative effects in hemoglobin. Nature (London) 228: 726–739Google Scholar
  84. Perutz MF (1979) Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem 48: 327–386PubMedGoogle Scholar
  85. Perutz MF (1984) Species adaption in a protein molecule. Adv Protein Chem 36: 213–244PubMedGoogle Scholar
  86. Perutz MF (1990) Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol 52: 1–28PubMedGoogle Scholar
  87. Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature (London) 229: 421–426Google Scholar
  88. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT (1960) Structure of hemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution by X-ray analysis. Nature (London) 183: 416–422Google Scholar
  89. Perutz MF, DelPulsinelli P, Ten Eyck L, Kilmartin JV, Shibata S, Iuchi I, Miyaji T, Hamilton HB (1971) Hemoglobin Hiroshima and the mechanism of the alkaline Bohr effect. Nature New Biol 232: 147–149PubMedGoogle Scholar
  90. Perutz MF, Bauer C, Gros G, Leclerq F, Vandecasserie C, Schnek AG, Braunitzer G, Friday AD, Joysey KA (1981) Allosteric regulation of crocodilian hemoglobin. Nature (London) 291: 682–684Google Scholar
  91. Perutz MF, Fermi G, Luisi B, Shaanan B, Liddington RC (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Acc Chem Res 20: 309–321Google Scholar
  92. Petruzzelli R, Barra D, Goffredo BA, Bossa F, Colletta M, Brunori M (1984) Amino- acid sequence of β chain of hemoglobin IV from trout (Salmo irideus). Biochem Biophys Acta 789: 69–73Google Scholar
  93. Petruzzelli R, Goffredo BM, Barra D, Bossa F, Boffi A, Verzili D, Ascoli D, Chiancone E (1985) Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts. FEBS Lett 184: 328–332PubMedGoogle Scholar
  94. Petruzzelli R, Boffi A, Barra D, Bossa F, Ascoli F, Chiancone E (1989) Scapharca hemoglobins, type cases of the novel mode of chain assembly and heme-heme communication: amino acid sequence and subunit interactions of the tetrameric component. FEBS Lett 259: 133–136PubMedGoogle Scholar
  95. Phillips SEV (1980) Structure and refinement of oxymyoglobin at 1.6 Å resolution. J Mol Biol 142: 531–554PubMedGoogle Scholar
  96. Read KRH (1966) Molluscan hemoglobin and myoglobin. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca vol 2. Academic Press, New York, pp 209–232Google Scholar
  97. Riggs AF (1988) The Bohr effect. Annu Rev Physiol 50: 181–204PubMedGoogle Scholar
  98. Riggs CK, Riggs AF (1990) cDNA-derived amino acid sequences of single and two- domain globins from the clam Barbatia reeveana. In: Preaux G, Lontie R (eds) Invertebrate di-oxygen carriers. Leuven University Press, Leuven, pp 57–60Google Scholar
  99. Roberts MS, Terwilliger RC, Terwilliger NB (1984) Comparison of sea cucumber hemoglobin structures. Comp Biochem Physiol 77B: 237–243Google Scholar
  100. Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull (Mar Biol Lab, Woods Hole) 61: 427–456Google Scholar
  101. Royer WE Jr, Love WE (1986) The low resolution structures of the cooperative hemoglobins from the blood clam Scapharca inaequivalvis. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, Heidelberg, New York, pp 111–115Google Scholar
  102. Royer WE Jr, Love WE, Fenderson FF (1985) Cooperative dimeric and tetrameric clam hemoglobins are novel assemblages of myoglobin folds. Nature (London) 316: 277–280Google Scholar
  103. Royer WE Jr, Hendrickson WA, Chiancone E (1989) The 2.4 Å crystal structure of Scapharca dimeric hemoglobin: cooperativity based on directly communicating hemes at a novel subunit interface. J Biol Chem 264: 21052–21061PubMedGoogle Scholar
  104. Royer WE Jr, Hendrickson WA, Chiancone E (1990) Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science 249: 518–521PubMedGoogle Scholar
  105. Rumen NK, Love WE (1963) The six hemoglobins of the sea lamprey (Petromyzon marinus). Arch Biochem Biophys 103: 24–35PubMedGoogle Scholar
  106. Rund JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (London) 173: 848–850Google Scholar
  107. Russu IM, Ho NT, Ho C (1980) Role of the ßl46 histidyl residue in the alkaline Bohr effect of hemoglobin. Biochemistry 19: 1043–1052PubMedGoogle Scholar
  108. San George RC, Nagel RL (1985) Dimeric hemoglobins from the arcid blood clam, Noetia ponderosa: structure and functional properties. J Biol Chem 260: 4331–4337Google Scholar
  109. Schreiber JK, Parkhurst LJ (1984) Ligand binding equilibrium and kinetic measurements on the dimeric myoglobin of Busycon canaliculatum and the comparative ligand binding of diverse non-cooperative heme proteins. Comp Biochem Physiol 78A: 129–135Google Scholar
  110. Schroeder WA, Shelton JR, Shelton JB, Cormick J, Jones RT (1963) The amino acid sequence of the γ chain of human fetal hemoglobin. Biochemistry 2: 992–1008PubMedGoogle Scholar
  111. Shaanan B (1983) Structure of human oxyhemoglobins at 2.1 Å resolution. J Mol Biol 171: 31–59PubMedGoogle Scholar
  112. Smith FR, Ackers GK (1985) Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. Proc Natl Acad Sci USA 82: 5347–5351PubMedGoogle Scholar
  113. Smith SE, Brittain T, Wells RMG (1988) A kinetic and equilibrium study of ligand binding to the monomeric and dimeric heme-containing globins of two chitons. Biochem J 252: 673–678PubMedGoogle Scholar
  114. Steigemann W, Weber E (1979) Structure of erythrocruorin in different ligand states refined at 1.4 Å resolution. J Mol Biol 127: 309–338PubMedGoogle Scholar
  115. Steinmeier RC, Parkhust LJ (1979) Oxygen and carbon monoxide equilibria and the kinetics of oxygen binding by the cooperative dimeric hemoglobin of Thyonella gemmata. Biochemistry 18: 4645–4651PubMedGoogle Scholar
  116. Suzuki T, Takagi T, Ohta S (1989a) Primary structure of a dimeric hemoglobin from the deep-sea cold-seep clam Calyptogena soyoae. Biochem J 260: 177–182PubMedGoogle Scholar
  117. Suzuki T, Takagi T, Ohta S (1989b) Amino acid sequence of the dimeric hemoglobin (HbI) from the deep-sea cold-seep clam Calyptogena soyoae and the phylogenetic relationship with other molluscan globins. Biochim Biophys Acta 993: 254–259Google Scholar
  118. Svedberg T (1933) Sedimentation constants, molecular weights, and isoelectric points of the respiratory proteins. J Biol Chem 103: 311–325Google Scholar
  119. Takagi T, Tobita M, Shikama K (1983) Amino acid sequence of dimeric myoglobin from Cerithidea rhizophorarum. Biochim Biophys Acta 745: 32–36PubMedGoogle Scholar
  120. Tam L-T, Riggs AF (1984) Oxygen binding and aggregation of bullfrog hemoglobin. J Biol Chem 259: 2610–2616PubMedGoogle Scholar
  121. Tam L-T, Gray GP, Riggs AF (1986) The hemoglobins of the bullfrog Rana catesbeiana: the structure of the ß chain of component C and the role of the a chain in the formation of intermolecular disulfide bonds. J Biol Chem 261: 8290–8294PubMedGoogle Scholar
  122. Terwilliger RC (1975) Oxygen equilibrium and subunit aggregation of a holothurian hemoglobin. Biochim Biophys Acta 386: 62–68PubMedGoogle Scholar
  123. Terwilliger RC (1980) Structures of invertebrate hemoglobins. Am Zool 20: 53–67Google Scholar
  124. Terwilliger RC, Terwilliger NB (1985) Molluscan hemoglobins. Comp Biochem Physiol 81B: 255–261Google Scholar
  125. Terwilliger RC, Garlick RL, Terwilliger NB (1976) Hemoglobins of Glycera robusta: structures of coelomic cell hemoglobin and body wall myoglobin. Comp Biochem Physiol 54B: 149–153Google Scholar
  126. Terwilliger RC, Garlick RL, Terwilliger NB (1980) Characterization of the hemoglobins of Travisia foetida. Comp Biochem Physiol 66B: 261–266Google Scholar
  127. Terwilliger RC, Terwilliger NB, Arp A (1983) Thermal vent clam (Calyptogena magnifica) hemoglobin. Science 219: 981–983PubMedGoogle Scholar
  128. Van Beek GGM, De Bruin SH (1980) Identification of the residues involved in the oxygen-linked chloride-ion binding sites in human deoxyhemoglobin and oxyhemoglobin. Eur J Biochem 105: 353–360PubMedGoogle Scholar
  129. Vandergon TL, Colacino JM (1989) Characterization of hemoglobin from Phoronis architecta (Phoronida). Comp Biochem Physiol 94B: 31–39Google Scholar
  130. Vinson CR, Bonaventura J (1987) Structure and oxygen equilibrium of the three coelomic cell hemoglobins of the echiurian worm Thalassema mellita (Conn). Comp Biochem Physiol 87B: 361–366Google Scholar
  131. Wajcman H, Kilmartin JV, Najman A, Labie D (1975) Hemoglobin Cochin-Port-Royal: consequences of the replacement of the β chain c-terminal by an arginine. Biochim Biophys Acta 400: 354–364PubMedGoogle Scholar
  132. Weber RE (1973) Functional and molecular properties of corpuscular hemoglobin from the bloodworm Glycera gigantea. Neth J Sea Res 7: 316–327Google Scholar
  133. Weber RE, Heidemann W (1977) The coelomic hemoglobin of the bloodworm Glycera rouxii: molecular and oxygenation properties. Comp Biochem Physiol 57A: 151–155Google Scholar
  134. Weber RE, Sullivan B, Bonaventura J, Bonaventura C (1977a) The hemoglobin systems of the bloodworms Glycera dibranchiata and G americana: oxygen binding properties of hemolysates and component hemoglobins. Comp Biochem Physiol 58B: 183–187Google Scholar
  135. Weber RE, Mangum C, Steinman H, Bonaventura C, Sullivan B, Bonaventura J (1977b) Hemoglobins of two terebellid polychaetes: Enoplobranchus sangueneus and Amphitrite ornata. Comp Biochem Physiol 56A: 179–187Google Scholar
  136. Weber RE, Wells RMG, Rossetti JE (1983) Allosteric interactions governing oxygen equilibria in the hemoglobin system of the spiny dogfish, Squalus acanthias. J Exp Biol 103: 109–120PubMedGoogle Scholar
  137. Weber RE, Jensen FB (1988) Functional adaptations in hemoglobins from ectothermic vertebrates. Annu Rev Physiol 50: 161–178PubMedGoogle Scholar
  138. Weber RE, Kleinschmidt T, Abbassi A, Wells RMG, Braunitzer G (1989) Allosteric transition in hemoglobin from the rhynchocephalian reptile relict Sphenodon punctatus. Hemoglobin 13: 625–636PubMedGoogle Scholar
  139. Wells RMG, Tetens V, Brittain T (1983) Absence of cooperative hemoglobin-oxygen binding in Sphenodon, a reptilian relict from the Triassic. Nature (London) 306: 500–502Google Scholar
  140. Wood SC, Johansen K, Weber RE (1972) Hemoglobin of the coelacanth. Nature (London) 239: 283–285Google Scholar
  141. Wood WB, Wilson JH, Benbow RM, Hood LE (1981) Biochemistry: a problems approach. Benjamin/Cummings Menlo Park, pp 60–66Google Scholar
  142. Wyman J (1979) Variations on a theme: A comparative study of fish hemoglobins. Comp Biochem Physiol 62A: 9–12Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. E. RoyerJr.
    • 1
  1. 1.Program in Molecular Medicine and Department of Biochemistry and Molecular BiologyUniversity of Massachusetts Medical CenterWorcesterUSA

Personalised recommendations