Oxygen Carriers as Molecular Models of Allosteric Behavior

  • M. Brouwer
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 13)

Abstract

Cooperative phenomena, in which events at one place determine what happens at another, are best known in physics, with the phenomenon of phase transitions as a classic example. Cooperative phenomena also have an important function in biology that was first defined and analyzed in a seminal paper published a quarter century ago (Monod et al. 1965). The classic example of cooperativity among biological macromolecules is that of the binding of oxygen by hemoglobin. According to simple mass action law, with the assumption that the four oxygen-binding sites on Hb are identical and independent or noninteracting:
$${\text{HbO}_2 \longleftarrow \text{K}_{\text{diss}}\longrightarrow}\text{Hb} +\text{O}_2\;\text{and}\; [\text{Hb}][\text{O}_2]\: =\text{K}_{\text{diss}}[{\text{HbO}_2}]$$
(1)

Keywords

Peroxide Hexagonal Carbon Monoxide CaCl2 Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair GS (1925) The hemoglobin system, VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 63: 529–535Google Scholar
  2. Antonini E, Chiancone E (1977) Assembly of multisubunit respiratory proteins. Annu Rev Biophys Bioeng 6: 239–271PubMedCrossRefGoogle Scholar
  3. Arisaka F, Van Holde KE (1979) Allosteric properties and the association equilibria of hemocyanin from Callianassa californiensis. J Mol Biol 134: 41–73PubMedCrossRefGoogle Scholar
  4. Brouwer M, Serigstad B (1989) Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers. Biochemistry 28: 8819–8827PubMedCrossRefGoogle Scholar
  5. Brouwer M, Wolters M, Van Bruggen EFJ (1976) Proteolytic fragmentation of Helix pomatia α-hemocyanin: structural domains in the polypeptide chain. Biochemistry 15: 2618–2623PubMedCrossRefGoogle Scholar
  6. Brouwer M, Bonaventura C, Bonaventura J (1978) Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp Penaeus setiferus. Biochemistry 17: 2148–2154PubMedCrossRefGoogle Scholar
  7. Brouwer M, Bonaventura C, Bonaventura J (1982) Chloride and pH dependence of cooperative interactions in Limulus polyphemus hemocyanin. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Alan R Liss, New York, pp 231–256Google Scholar
  8. Brunori M, Coletta M, Di Cera E (1986) A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. Biophys Chem 23: 215–222PubMedCrossRefGoogle Scholar
  9. Connelly PR, Gill SJ, Miller KE, Zhou G, Van Holde KE (1989) Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin. Biochemistry 28: 1835–1843PubMedCrossRefGoogle Scholar
  10. Decker H, Connelly PR, Robert CH, Gill SJ (1988) Nested allosteric interactions in Tarantula hemocyanin revealed through the binding of oxygen and carbon monoxide. Biochemistry 27: 6901–6908PubMedCrossRefGoogle Scholar
  11. DiCera E, Robert CH, Gill SJ (1987) Allosteric interpretation of the oxygen-binding reaction of human hemoglobin tetramers. Biochemistry 26: 4003–4008CrossRefGoogle Scholar
  12. Ellerton DH, Ellerton NF, Robinson HA (1983) Hemocyanin - a current perspective. Prog Biophys Mol Biol 41: 143–248PubMedCrossRefGoogle Scholar
  13. Gielens C, Preaux G, Lontie R (1977) Structural investigations on ß-haemocyanin of Helix pomatia by limited proteolysis. In: Bannister JV (ed) Structure and function of haemocyanin. Springer, Berlin Heidelberg New York, pp 85–94CrossRefGoogle Scholar
  14. Gill SJ, DiCera E, Doyle ML, Bishop GA, Robert CH (1987) Oxygen binding constants for human hemoglobin tetramers. Biochemistry 26: 3995–4002PubMedCrossRefGoogle Scholar
  15. Hess VL, Szabo A (1979) Ligand binding to macromolecules. Allosteric and sequential models of cooperativity. J Chem Educ 56: 289–293CrossRefGoogle Scholar
  16. Imai K, Yonetani T (1975) pH dependence of the Adair constants of human hemoglobin. J Biol Chem 250: 2227–2231PubMedGoogle Scholar
  17. Johnson ML, Halvorson HR, Ackers GK (1976) Oxygenation-linked subunit interactions in human hemoglobin: analysis of linkage functions for constituent energy terms. Biochemistry 15: 5363–5371PubMedCrossRefGoogle Scholar
  18. Johnson BA, Bonaventura C, Bonaventurs J (1988) Allostery in Callinectes sapidus hemocyanin: cooperative oxygen binding and interactions with L-lactate, calcium and protons. Biochemistry 27: 1995–2001PubMedCrossRefGoogle Scholar
  19. Koshland DE Jr, Nemethy D, Filmer DF (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5: 365–385PubMedCrossRefGoogle Scholar
  20. Lamy J, Leclerc M, Sizaret P, Lamy J, Miller K, McPharland R, Van Holde KE (1987) Octopus dofleini hemocyanin: structure of the seven domain polypeptide chain. Biochemistry 26: 3509–3518CrossRefGoogle Scholar
  21. Mangum CP, Burnett LE (1987) Response of sipunculid hemerythrins to inorganic ions and CO2. J Exp Zool 244: 59–65CrossRefGoogle Scholar
  22. Miller KI (1985) Oxygen equilibria of Octopus dofleini hemocyanin. Biochemistry 24: 4582–4586PubMedCrossRefGoogle Scholar
  23. Mills FC, Johnson ML, Ackers GK (1976) Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry 15: 5350–5362PubMedCrossRefGoogle Scholar
  24. Minton AP, Imai K (1974) The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin. Proc Natl Acad Sci USA 71: 1418–1421PubMedCrossRefGoogle Scholar
  25. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118PubMedCrossRefGoogle Scholar
  26. Perutz MF (1979) Regulation of oxygen affinity of hemoglobin: influence of the structure of the globin on the heme iron. Annu Rev Biochem 48: 327–396PubMedCrossRefGoogle Scholar
  27. Reem RC, Solomon EI (1987) Spectroscopic studies of the binuclear ferrous active site of deoxyhemerythrin: coordination number and probable binding ligands for the native and ligand bound forms. J Am Chem Soc 109: 1216–1226CrossRefGoogle Scholar
  28. Richardson DE, Reem RC, Solomon EI (1983) Cooperativity in oxygen binding to Lingula reevii hemerythrin: spectroscopic comparison to the sipunculid hemerythrin coupled binuclear iron coupled site. J Am Chem Soc 105: 7780–7781CrossRefGoogle Scholar
  29. Richey B, Decker H, Gill SJ (1985) Binding of oxygen and carbon monoxide to arthropod hemocyanin: an allosteric analysis. Biochemistry 24: 109–117PubMedCrossRefGoogle Scholar
  30. Robert CH, Decker H, Richey B, Gill SJ, Wyman J (1987) Nesting: Hierarchies of allosteric interactions. Proc Natl Acad Sci USA 84: 1891–1895PubMedCrossRefGoogle Scholar
  31. Saroff HA, Minton AP (1972) The Hill plot and the energy of interaction in hemoglobin. Science 175: 1253–1255PubMedCrossRefGoogle Scholar
  32. Siezen RJ, Van Bruggen EFJ (1974) Structure and properties of hemocyanins XII: electron microscopy of dissociation products of Helix pomatia α-hemocyanin. Quaternary structure. J Mol Biol 90: 77–89PubMedCrossRefGoogle Scholar
  33. Szabo A, Karplus M (1976) Analysis of the interaction of organic phosphates with hemoglobin. Biochemistry 15: 2869–2877PubMedCrossRefGoogle Scholar
  34. Tiyuma I, Imai K, Shimizu K (1973) Analysis of oxygen equilibrium of hemoglobin and control mechanism of organic phosphates. Biochemistry 12: 1491–1498CrossRefGoogle Scholar
  35. Van Holde KE, Miller K (1982) Haemocyanins. Q Rev Biophys 15: 1–70PubMedCrossRefGoogle Scholar
  36. Wyman J (1964) Linked functions and reciprocal effects in hemoglobin: a second look. Adv Protein Chem 19: 223–286PubMedCrossRefGoogle Scholar
  37. Wyman J (1967) Allosteric linkage. J Am Chem Soc 89: 2202–2218CrossRefGoogle Scholar
  38. Wyman J (1972) On allosteric models. Curr Top Cell Regul 6: 209–226Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. Brouwer
    • 1
  1. 1.Duke University Marine Laboratory BeaufortUSA

Personalised recommendations