Skip to main content

Quiescence and Dormancy in Somatic Embryos

  • Chapter
Book cover High-Tech and Micropropagation I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 17))

Abstract

Certain organisms avoid stress by entering a state of deep rest or dormancy; an adaptive mechanism that allows colonization of otherwise unfavorable environments. During dormancy, need for nutrients is greatly reduced as is sensitivity to environmental changes, thereby ensuring survival through hostile periods, such as dry or cold seasons. The adaptive range of organisms that possess this ability is greatly increased. For example, in the animal kingdom, a number of different taxa, notably phylum Tardigrada (tardigrades), can become dormant upon dehydration, which allows them to survive dry periods. Others, such as the fairy shrimp (Eubranchipus) produce eggs that withstand severe drying (Hickman et al. 1974). They become active and reproduce upon rehydration during moist periods. Such animals can, thus, survive and thrive in areas that are subjected to periodic cycles of drying and wetting. Plants such as Selaginelle lepidophylla (Hook, and Grev.) Spring behave similarly (Adams et al. 1990); they stop growth and shrivel during unfavorable dry seasons but resume a normal appearance and growth habit upon rehydration. Both of these diverse types of organisms can remain dormant and survive prolonged periods of dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CA, Fjerstad MC, Rinne RW (1983) Characteristics of soybean seed maturation: necessity for slow drying. Crop Sci 23: 265–267

    Article  Google Scholar 

  • Adams RP, Kendall E, Kartha KK (1990) Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem Syst Ecol 18: 107–110

    Article  CAS  Google Scholar 

  • Anderson RG (1976) Prospects for improving production of cereals. In: Scrimshaw NS, Behar M (eds) Nutrition and agricultural development: significance and potential for the tropics. Plenum Press, New York, pp 295–304

    Google Scholar 

  • Bajaj YPS (1986) In vitro preservation of genetic resources - techniques and problems. Int Symp Nuclear techniques and in-vitro culture for plant improvement. IAEA/FAO, Vienna 1985, pp 43–57

    Google Scholar 

  • Barton LV (1961) Seed preservation and longevity. Leonard Hill, London, pp 216

    Google Scholar 

  • Bewley JD, Black M (1985) Seeds: physiology of development and germination. Plenum, New York, 367 pp

    Google Scholar 

  • Bidwell RGS (1974) Dormancy, senescence and death: plant physiology. Macmillan, New York, pp 466–493

    Google Scholar 

  • Flemion F (1937) After-ripening at 5 °C favours germination of grape seeds. Contr Boyce Thompson Inst 9: 7–15

    Google Scholar 

  • Gingas VM, Lineberger RD (1988) Plantlet regeneration from asexual embryos of Quercus rubra L. Hort Science 23: 786

    Google Scholar 

  • Gray DJ (1987a) Introduction to the symposium. In: Proc Symp Synthetic seed technology for the mass cloning of crop plants: problems and perspectives. Hort Science 22: 796–797

    Google Scholar 

  • Gray DJ (1987b) Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. In: Proc Symp Synthetic seed technology for the mass cloning of crop plants: problems and perspectives. Hort Science 22: 810–814

    Google Scholar 

  • Gray DJ (1987c) Concluding remarks. In: Proc Symp Synthetic seed technology for the mass cloning of crop plants: problems and perspectives. Hort Science 22: 814

    Google Scholar 

  • Gray DJ (1987d) Effects of dehydration and other environmental factors on dormancy in grape somatic embryos. Hort Science 22: 1118

    Google Scholar 

  • Gray DJ (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev Biol 25: 1173–1178

    Google Scholar 

  • Gray DJ (1990) Synthetic seed for clonal production of crop plants. In: Taylorson RB (ed) Recent advances in the development and germination of seeds. Plenum Press, New York, pp 29–45

    Google Scholar 

  • Gray DJ, Conger BV (1985a) Quiescence in somatic embryos of orchardgrass (Dactylis glomerata) induced by desiccation. Am J Bot 72: 816

    Google Scholar 

  • Gray DJ, Conger BV (1985b) Somatic embryo ontogeny in tissue cultures of orchardgrass. In: Henke RR, Hughes KW, Constantin MJ, Hollaender A (eds) Tissue culture in forestry and agriculture. Plenum, New York, pp 49–57

    Google Scholar 

  • Gray DJ, Conger BV (1985c) Time-lapse light photomicrography and scanning electron microscopy of somatic embryo ontogeny from cultured leaves of Dactylis glomerata ( Gramineae ). Trans Am Microsc Soc 104: 395–399

    Google Scholar 

  • Gray J, Mortensen JA (1987) Initiation and maintenance of long term somatic embryogenesis from anthers and ovaries of Vitis longii ’Microsperma’. Plant Cell Tissue Organ Cult 9: 73–80

    Article  Google Scholar 

  • Gray DJ, Purohit A (1991) Embryogenesis and development of synthetic seed technology. Crit Rev Plant Sei 10: 33–61

    Article  Google Scholar 

  • Gray DJ, Conger BV, Hanning GE (1984) Somatic embryogenesis in suspension and suspension-derived callus cultures of Dactylis glomerata. Protoplasma 122: 196–202

    Article  Google Scholar 

  • Gray DJ, Conger BV, Songstad DD (1987) Desiccated quiescent somatic embryos of orchardgrass for use as synthetic seeds. In Vitro Cell Dev Biol 23: 29–33

    Google Scholar 

  • Hepher A, Roberts JA (1985a) The control of seed germination in Trollius ledebouri: the breaking of dormancy. Planta 166: 314–320

    Article  CAS  Google Scholar 

  • Hepher A, Roberts JA (1985b) The control of seed germination in Trollius ledebouri: a model of seed dormancy. Planta 166: 321–328

    Article  CAS  Google Scholar 

  • Hickman CP Sr, Hickman CP Jr, Hickman FM (1974) Integrated principles of zoology, 5th edn. CV Mosby, St Louis, 1025 pp

    Google Scholar 

  • Jones LH (1974) Long term survival of embryoids of carrot (Daucus carota L.). Plant Sei Lett 2: 221–224

    Article  CAS  Google Scholar 

  • Kermode AR, Bewley JD, Dasgupta J, Misra S (1986) The transition from seed development to germination: a key role for desiccation? Hort Science 21: 1113–1118

    CAS  Google Scholar 

  • King MW, Roberts EH (1979) The storage of recalcitrant seeds. Report for the International Board for Plant Genetic Resources Secretariat, Rome, IBPGR, p 96

    Google Scholar 

  • Kitto SL, Janick J (1985) Hardening treatments increase survival of synthetically-coated asexual embryos of carrot. J Am Soc Hort Sei 110: 283–286

    CAS  Google Scholar 

  • Koster KL, Leopold CA (1988) Sugars and desiccation tolerance in seed. Plant Physiol 88: 829–832

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Senaratna R, Bowley SR, Brown DCW, Krochko JE, Bewley JD (1989) Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol 25: 1183–1188

    Google Scholar 

  • Neumann D, Norer L, Parthier B, Rieger R, Scharf KD, Wollgiehn R, Nieden UZ (1989) Heat shock and other stress response systems of plants. Biol Zentralbl 108: 1–146

    Google Scholar 

  • Nitzsche W (1978) Erhaltung der Lebensfähigkeit in getrocknetem Kallus. Z Pflanzenphysiol 87:469–472 Owen EB (1956) The storage of seeds for maintenance of viability. Commonw Agric Bur Bucks, England, 81 pp

    Google Scholar 

  • Parrot WA, Dryden G, Vogt S, Hildebrand DF, Collins GB, Williams EG (1988) Optimization of somatic embryogenesis and embryo germination in soybean. In Vitro Cell Dev Biol 24: 817–820

    Google Scholar 

  • Pearce D, Pharis RP, Rajasekaran K, Mullins MG (1987) Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V rupestris Scheele). Plant Physiol 80: 381–385

    Article  Google Scholar 

  • Rajasekaran K, Vine J, Mullins MG (1982) Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154: 139–144

    Article  CAS  Google Scholar 

  • Redenbaugh K, Fujii JA, Slade D (1988) Encapsulated plant embryos. In: Mizrahi A (ed) Biotechnology in agriculture. Liss, New York, pp 225–248

    Google Scholar 

  • Roberts LM (1976) Improving the production and nutritional quality of food legumes. In: Scrimshaw NS, Behar M (eds) Nutrition and agricultural development: significance for the tropics. Plenum Press, New York, pp 309–317

    Google Scholar 

  • Senaratna T, McKersie BD, Borochov A (1987) Desiccation and free radical mediated changes in plant membranes. J Exp Bot 38: 2005–2014

    Article  CAS  Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos - influence of abscisic acid, stress pretreatments and drying rates. Plant Sei 65: 253–259

    CAS  Google Scholar 

  • Senaratna T, McKersie BD, Bowley ST (1990) Artificial seeds of alfalfa (Medicago sativa L.) induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol 26: 85–90

    Google Scholar 

  • Thevenot C, Ralambosa J, Simond-Cote E (1987) Influence of abscisic acid and oxygen supply on germination of more or less dormant apple embryos. Isr J Bot 36: 101–112

    CAS  Google Scholar 

  • Towill LE (1988) Genetic consideration for germplasm preservation of clonal materials. Hort Science 23: 91–95

    Google Scholar 

  • Tran VN, Cavanaugh AK (1984) Structural aspects of dormancy. In: Murray DR (ed) Seed physiology, vol 2. Germination and reserve mobilization. Academic Press, Australia, pp 1–44

    Google Scholar 

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489

    Article  CAS  Google Scholar 

  • Withers LA (1989) In vitro conservation and germplasm utilisation. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge Press, New York, pp 309–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gray, D.J., Purohit, A. (1991). Quiescence and Dormancy in Somatic Embryos. In: Bajaj, Y.P.S. (eds) High-Tech and Micropropagation I. Biotechnology in Agriculture and Forestry, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76415-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76415-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76417-2

  • Online ISBN: 978-3-642-76415-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics