Bacterial Exotoxins and Acute Lung Failure

  • W. Seeger
  • F. Grimminger
  • D. Walmrath
  • N. Suttorp
  • S. Bhakdi
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie 11.–13. April 1991 in Mosbach/Baden book series (MOSBACH, volume 42)


The adult respiratory distress syndrome (ARDS), developing under conditions of sepsis, shock, and severe polytrauma, is characterized by increased pulmonary artery pressure with concomitant perfusion inhomogeneities and increased permeability of lung endothelial and epithelial membranes (Fig. 1). The permeability increase results in the formation of protein-rich interstitial and alveolar edema. Ventilation perfusion mismatch, shunt flow, and diffusion impairment cause severe disturbances of gas exchange.


Pulmonary Artery Pressure Adult Respiratory Distress Syndrome Vascular Leakage Perfusion Fluid Rabbit Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fowler AA, Hamman RF, Zerbe GO, Benson KN & Hyers TM (1985) Adult respiratory distress syndrome. Prognosis after onset. Am Rev Respir Dis 132:427–478Google Scholar
  2. 2.
    Montgomery AB, Stager MA, Carrico CJ & Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132:485–489PubMedGoogle Scholar
  3. 3.
    Petty TL (1985) Indicators of risk, course, and prognosis in adult respiratory distress syndrome (ARDS). Am Rev Respir Dis 132:471–472PubMedGoogle Scholar
  4. 4.
    Andrews CP, Coalson JJ, Smith JD & Johanson WG (1981) Diagnosis of nosocomial pneumonia in acute, diffuse lung injury. Chest 80:254–258PubMedCrossRefGoogle Scholar
  5. 5.
    Bodey GP, Jadea L & Elting I (1985) Pseudomonas bacteremia. Arch Intern Med 145:1621–1629PubMedCrossRefGoogle Scholar
  6. 6.
    Brigham KL & Meyrick B (1984) Interactions of granulocytes with the lung. Circ Res 54:623–635PubMedGoogle Scholar
  7. 7.
    Brigham KL & Meyrick B (1977) Endotoxin and lung injury. Am Rev Respir Dis 133:913–927Google Scholar
  8. 8.
    Cavalierei S, Bohach GA & Snyder IS (1984) Escherichia coli a-hemolysin: characteristics and probable role in pathgenecity. Microbiol Rev l(48):326–343Google Scholar
  9. 9.
    Bhakdi S, Mackman N, Nicaud J-M & Holland IB (1986) Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun 52:63–69PubMedGoogle Scholar
  10. 10.
    Bhakdi S & Tranum-Jensen J (1987) Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol 107:148–223Google Scholar
  11. 11.
    Bhakdi S & Tranum-Jensen J (1988) Damage to cell membranes by pore-forming bacteria cytolysins. Progr Allerg 40:1–43PubMedGoogle Scholar
  12. 12.
    Mackman N & Hollan IB (1984) Secretion of a 107 K dalton polypetide onto the medium from a hemolytic E. coli K12 strain. Mol Gen Genet 193:312–315PubMedCrossRefGoogle Scholar
  13. 13.
    Welch RA & Pellet S (1988) Transcriptional organization of theEscherichia coli hemolysin genes. J Bacteriol 170:1622–1630PubMedGoogle Scholar
  14. 14.
    Welch RA, Dellinger EP, Minshew B & Falkow S (1981) Hemolysin contributes to virulence of extra-intestinal E. coli infections. Nature (London) 294:665–667CrossRefGoogle Scholar
  15. 15.
    Welch RA & Falkow S (1984) Characterization of Escherichia coli hemolysin conferring quantitative differences in virulence. Infect Immun 43:156–160PubMedGoogle Scholar
  16. 16.
    Fünfstück R, Tschäpe H, Stein G, Kunath H, Bergner M & Wessel G (1986) Virulence properties of Escherichia coli strains in patients with chronic pyelonephritis. Infection 14:145–150PubMedCrossRefGoogle Scholar
  17. 17.
    Hacker J, Hughes C, Hof H & Goebel W (1983) Cloned hemolysin genes from Escherichia coli that cause urinary tract infection determine different levels of toxicity in mice. Infect Immun 42:57–63PubMedGoogle Scholar
  18. 18.
    Flemlee T, Pellet S & Welch RA (1985) Nucleotide sequence of an E. coli chromosomal hemolysin. J Bacteriol 163:94–105Google Scholar
  19. 19.
    Menestrina G, Mackman N, Holland IB & Bhakdi S (1987) E. coli hemolysin forms volt- age-dependent ion charinels in lipid membranes. Biochim Biophys Acta 905:109–117PubMedCrossRefGoogle Scholar
  20. 20.
    Menestrina G (1988) Escherichia coli hemolysin permeabilizes small unilamellar vesicles loaded with calcium by a single-hit mechanism. FEBS Lett. 232:217–224PubMedCrossRefGoogle Scholar
  21. 21.
    Bhakdi S, Greulich S, Muhly M, Eberspächer B, Becker H, Thiele A & Hugo F (1989) Potent leucocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med 169:737–754PubMedCrossRefGoogle Scholar
  22. 22.
    Boehm DF, Welch RA & Snyder IS (1990) Calcium is required for binding ofEscherichia coli hemolysin (Hlya) to erythrocyte membrane. Infect Immun 58:1951–1958PubMedGoogle Scholar
  23. 23.
    Ludwig A, Jarchau T, Benz R & Goebel W (1988) The repeat domain of E. coli hemolysin is responsible for its Ca-dependent binding to erythrocytes. Mol Gen Genet 214:553–561PubMedCrossRefGoogle Scholar
  24. 24.
    Boehm DF, Welch RA & Snyder IS (1990) Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun 58:1959–1964PubMedGoogle Scholar
  25. 25.
    Seeger W, Walter H, Suttorp N & Bhakdi S (1989) Thromboxane-mediated hypertension and vascular leakage evoked by low doses of Escherichia coli hemolysin in rabbit lungs. J Clin Invest 84:220–227PubMedCrossRefGoogle Scholar
  26. 26.
    Seeger W, Obernitz R, Thomas M, Walmrath D, Holland IB, Grimminger F, Eberspächer B, Hugo F, Suttorp N Sc Bhakdi S (1991) Lung vascular injury after administration of viable hemolysin-forming Escherichia coli in isolated rabbit lungs. Am Rev Respir Dis (in press)Google Scholar
  27. 27.
    Walmrath E, König R, Ernst C, Brückner H, Grimminger F & Seeger W (1991) Ventilation-perfusion relationships in isolated bloodfiree perfused rabbit lungs. Am Rev Respir Dis (in press)Google Scholar
  28. 28.
    Seeger W, Birkemeyer RG, Ermert L, Suttorp N, Bhakdi S & Duncker HR (1990) Staphylococcal alpha-toxin induced vascular leakage in rabbit lungs. Lab Invest 63:341–349PubMedGoogle Scholar
  29. 29.
    Ermert L, Rousseau S, Schütte H, Birkemeyer RG, Grimminger F, Bhakdi S, Duncker HR & Seeger W, Induction of severe vascular leakage by low doses ofEscherichia coli hemolysin in perfused rabbit lungs, (submitted)Google Scholar
  30. 30.
    Suttorp N, Flöer B, Seeger W, Schnittler H & Bhakdi S (1990) Effects of E. coli hemolysin on endothelial cell function. Infect Immun 58:3796–3801PubMedGoogle Scholar
  31. 31.
    Grimminger F, Walmrath D, Birkemeyer RG, Bhakdi S & Seeger W (1990) Burst of leukotriene- and HETE-generation elicited by low dose Escherichia coli hemolysin in rabbit lungs. Infect Immun 58:2659–2663PubMedGoogle Scholar
  32. 32.
    Grimminger F, Thomas M, Obernitz R, Walmrath D, Bhakdi S & Seeger W (1990) Inflammatory lipid mediator generation elicited by viable hemolysin-forming Escherichia coli in lung vasculature. J Exp Med 172:1115–1125PubMedCrossRefGoogle Scholar
  33. 33.
    Bhakdi S, Greulich S, Muhly M, Eberspächer B, Becker H, Thiele A & Hugo F (1989) Potent leucocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med 169:737–754PubMedCrossRefGoogle Scholar
  34. 34.
    Grimminger F, Scholz C, Bhakdi S & Seeger W (1991) Subhemolytic doses of Escherichia coli hemolysin evoke large quantities of 4- and 5-series leukotrienes in human neutrophils in dependence on exogenous fatty acid supply. J Biol Chem (in press)Google Scholar
  35. 35.
    Grimminger F, Menger M, Becker G & Seeger W (1988) Potentiation of leukotriene generation following sequestration of neutrophils in isolated lungs. Blood 72:1687–1692PubMedGoogle Scholar
  36. 36.
    Grimminger F, Kreusler B, Schneider U, Becker G & Seeger W (1990) Influence of microvascular adherence on neutrophil leukotriene generation - evidence for cooperative eicosanoid synthesis. J Immunol 144:1866–1872PubMedGoogle Scholar
  37. 37.
    Seeger W, Suttorp N, Hellwig A & Bhakdi S (1986) Noncytolytic terminal complement complexes may serve as calcium gates to elicit leukotriene generation in human polymorphonuclear leukocytes. J Immunol 137:1286–1293PubMedGoogle Scholar
  38. 38.
    Bhakdi S, Greulich S, Muhly M, Korom S & Schmidt G (1990) Effects of E. coli hemolysin on human monocytes: cytocidal action and stimulation of interleukin-1 release. J Clin Invest 85:1746–1753PubMedCrossRefGoogle Scholar
  39. 39.
    Bhakdi S, Muhly M, Korom S & Hugo F (1989) Release of interleukin-1-beta associated with potent cytocidal action of staphylococcal alpha-toxin on human monocytes. Infect Immun 57:3512–3519PubMedGoogle Scholar
  40. 40.
    Seeger W & Suttorp N (1988) Role of membrane lipids in the pulmonary vascular abnormalities caused by bacterial toxins. Am Rev Respir Dis 136:462–466CrossRefGoogle Scholar
  41. 41.
    Grimminger F, Sibelius U, Bhakdi S, Suttorp N & Seeger W, Escherichia coli hemolysin- induced secretory responses and PAF generation in human neutrophils is related to phos- phoinositide hydrolysis In press: J Clin InventGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • W. Seeger
    • 1
  • F. Grimminger
    • 1
  • D. Walmrath
    • 1
  • N. Suttorp
    • 1
  • S. Bhakdi
    • 2
  1. 1.Medizinische Klinik IKlinikum der Justus-Liebig-UniversitätGießenGermany
  2. 2.Med. MikrobiologieKlinikum der Gutenberg-UniversitätMainzGermany

Personalised recommendations