Basic Mechanisms of the Inflammatory Response

  • K. Decker
Part of the Colloquium der Gesellschaft für Biologische Chemie 11.–13. April 1991 in Mosbach/Baden book series (MOSBACH, volume 42)


Inflammation is experienced by people as a pandora box of nasty things like fever and pain. In essence, however, it is one of the organism’s most powerful emergency measures designed to mobilize whatever forces can be mustered to overcome a life- threatening situation. As with many emergency actions, it sometimes happens that it exceeds its purpose and poses by itself a grave danger to the organism. That is the time when inflammation is just seen as a “bad”, pathological process. Nevertheless, it is basically a network of reactions indispensable for the survival of higher organisms.


Kupffer Cell Newcastle Disease Virus Membrane Attack Complex Hepatic Sinusoid Inflammatory Insult 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai K, Lee F, Miyajima A, Miyatake S, Arai N & Yokota T (1990) Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 59:783–836PubMedCrossRefGoogle Scholar
  2. Adachi V, Arii S, Monden K, Sasaoki T, Itai S, Funaki N, Higashitsuji H, Tamura J & Tobe T (1991) Interleukin-2 receptor expression on Kupffer cells: the mechanism of activation of Kupffer cells by BRMS. In: Wisse E, Knook DL & McCuskey RS (eds) Cells of the hepatic sinusoid Vol 3, Kupffer Cell Foundation Rijswijk pp 16–18Google Scholar
  3. Bauer J (1989) Interleukin-6 and its receptor during homeostasis, inflammation, and tumor growth. Klin Wochenschr 67:697–706PubMedCrossRefGoogle Scholar
  4. Bauer J, Bauer TM, Kalb T, Taga T, Lengyel G, Hirano T, Kishimoto T, Acs G, Mayer L & Gerok W (1989) Regulation of interleukin-6 receptor expression in human monocytes and monocyte-derived macrophages. J Exp Med 170:1537–1549PubMedCrossRefGoogle Scholar
  5. Benveniste EN & Merrill JE (1986) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature (London) 321:610–613CrossRefGoogle Scholar
  6. Beutler C & Cerami A (1986) Cachectin and tumor necrosis factor are two sides of the same biological coin. Nature (London) 320:584CrossRefGoogle Scholar
  7. Beutler B & Cerami A (1988) Cachectin (tumor necrosis factor): a macrophage hormone governing cellular metabolism and inflammatory response. Endocrine Rev 9:57–66CrossRefGoogle Scholar
  8. Beutler B, Milsark IW & Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 29:869–871CrossRefGoogle Scholar
  9. Bouwens L, Marinelli A, Kuppen PJK, Eggermont AMM, van de Velde CJH & Wisse E (1991) Pit cell and Kupffer cell reactions in rats treated with systemic or hepatic continuous infusion of interleukin-2. In: Wisse E, Knook DL & McCuskey RS (eds) Cells of the hepatic sinusoid, Vol 3. Kupffer Cell Foundation Rijswijk pp 306–311Google Scholar
  10. Busam KJ, Homfeld A, Zawatzky R, Kästner S, Bauer J, Gerok W & Decker K (1990a) Virus-versus endotoxin-induced activation of liver macrophages. Eur J Biochem 191:577–582PubMedCrossRefGoogle Scholar
  11. Busam KJ, Bauer TM, Bauer J, Gerok W & Decker K (1990b) Interleukin-6 release by rat liver macrophages. J Hepatol 11:367–373PubMedCrossRefGoogle Scholar
  12. Busam KJ, Schulze-Specking A & Decker K (1991) Endotoxin-refractory macrophages secrete tumor necrosis factor-a upon viral infection. Biol Chem Hoppe-Seyler 372:157–162PubMedCrossRefGoogle Scholar
  13. Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trallenque R, Fabra R & Heinrich PC (1989) Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242:237–239PubMedCrossRefGoogle Scholar
  14. Cochrane CG & Griffin JH (1982) The biochemistry and pathophysiology of the contact system of plasma. Adv Immunol 33:241–304PubMedCrossRefGoogle Scholar
  15. Davidson FF, Dennis EA, Powell M & Glenney JR Jr (1987) Inhibition of phospholipase A2 by “lipocortins” and calpactins. An effect of binding to substrate phospholipids. J Biol Chem 262:1698–1705PubMedGoogle Scholar
  16. Davis BH & Vucic A (1989) Transforming growth factor-beta modulates hepatic Ito cell proliferation, collagen synthesis and vitamin A metabolism in vitro. In: Wisse E, Knook DL & Decker K (eds) Cells of the hepatic sinusoid, Vol 2. Kupffer Cell Foundation Rijswijk pp 39–42Google Scholar
  17. Decker K (1985) Eicosanoids, signal molecules of liver cells. In: Berk PD (ed) Seminars in liver disease. Vol 5. Thierne-Stratton New York pp 175–190Google Scholar
  18. Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192:245–261PubMedCrossRefGoogle Scholar
  19. Decker T, Lew DJ, Mirkovitch J & Darnell JE Jr (1991) Cytoplasmic activation of GAF, an interferon-γ regulated DNA-binding factor. EMBO J 10:927–932PubMedGoogle Scholar
  20. Dieter P, Schulze-Specking A & Decker K (1988) Ca2+ requirement of prostanoid but not of superoxide production by rat Kupffer cells. Eur J Biochem 177:61–67PubMedCrossRefGoogle Scholar
  21. Fischer G, Bang H & Mech C (1984) Nachweis einer Enzymkatalyse für die cis-trans-Iso- merisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta 43:1101–1111PubMedGoogle Scholar
  22. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T & Schmid F (1989) Cyclophilin and peptidyl-prolyl eis-trans isomerase are probably identical proteins. Nature (London) 337:476–478CrossRefGoogle Scholar
  23. Flower RJ (1986) Background and discovery of lipocortins. Agents Actions 17:255–262PubMedCrossRefGoogle Scholar
  24. Freudenberg MA, Freudenberg N, Galanos C (1982) Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br J Exp Pathol 63:56–65PubMedGoogle Scholar
  25. Friedman SL & Arthur MJP (1989) Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 84:1780–1785PubMedCrossRefGoogle Scholar
  26. Gaillard T, Mülsch A, Busse R, Klein H & Decker K (1990) PGEhängige Reaktion der NO-Synthese in stimulierten Kupfferzellen. Z Gastroenterol 28:692Google Scholar
  27. Gauldie J, Richard C, Harnish D, Lansdorp P & Baumann H (1987) Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monokine-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 84:7251–7255PubMedCrossRefGoogle Scholar
  28. Goldstein IM (1988) Complement: biologically active products. In: Gallin JI, Goldstein IM & Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven Press New York pp 55–74Google Scholar
  29. Grewe M, Estler HC, Ballhom A & Decker K (1990) Wirkungen von Interleukin-2 auf Kupfferzellen der Ratte. Z Gastroenterol 28:695–696Google Scholar
  30. Hanahan DJ (1986) Platelet activating factor: a biologically active phosphoglyceride. Annu Rev Biochem 55:483–509PubMedCrossRefGoogle Scholar
  31. Handschumacher RE, Harding MW, Rice J, Drugge RJ & Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for Cyclosporin A. Science 226:544–547PubMedCrossRefGoogle Scholar
  32. Hansch GM, Seitz M, Martinotti G, Betz M, Rauterberg EW & Gemsa D (1984) Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J Immunol 133:2145–2150PubMedGoogle Scholar
  33. Herberman RB (1988) Lymphocytes: cytotoxic activities. In: Gallin JI, Goldstein IM & Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven Press New York pp 613–630Google Scholar
  34. Herrmann F, Cannistra SA, Levine H & Griffin JD (1985) Expression of interleukin-2 receptors and binding of interleukin-2 by gamma interferon-induced human leukemic and normal monocytic cells. J Exp Med 162:1111–1116PubMedCrossRefGoogle Scholar
  35. Hibbs JB, Taintor RR, Vavrin Z & Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94PubMedCrossRefGoogle Scholar
  36. Karck U, Peters T & Decker K (1988) The release of tumor necrosis factor from endotoxin- stimulated rat Kupffer cells is regulated by prostaglandin E2 and dexamethasone. J Hepatol 7:352–361PubMedCrossRefGoogle Scholar
  37. Kargman S & Rouzer CA (1989) Studies on the regulation, biosynthesis and activation of 5-lip-oxygenase in differentiated HL 60 cells. J Biol Chem 264:13313–13320PubMedGoogle Scholar
  38. Latham PS, Pilaro AM, Echeagaray PL & Varesio L (1991) Interleukin-2 induced cytotoxicity of rat Kupffer cells in vitro. In: Wisse E, Knook DL & McCuskey RS (eds) Cells of the hepatic sinusoid, Vol III. Kupffer Cell Foundation Rijswijk pp 312–314Google Scholar
  39. Lenardo MJ & Baltimore D (1989) NF-kB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–22PubMedCrossRefGoogle Scholar
  40. Liehr H, Grün M, Seelig H-P, Seelig R, Reutter W & Heine W-D (1978) On the pathogenesis of galactosamine hepatitis. Indications of extrahepatocellular mechanisms responsible for liver cell death. Virchows Arch B Cell Path 26:331–344Google Scholar
  41. Lüderitz T, Schade U & Rietschel ETh (1986) Formation and metabolism of leukotriene C4 in macrophages exposed to bacterial lipopolysaccharide. Eur J Biochem 155:377–382PubMedCrossRefGoogle Scholar
  42. Metealf D & Burgess AW (1982) Clonal analysis of the progenitor cell committment of granulocyte and macrophage production. J Cell Physiol 111:275–283CrossRefGoogle Scholar
  43. Meyer DH, Bachem MG & Gressner AM (1990) Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type βl and type α. Biochem Biophys Res Comm 171:1122–1129PubMedCrossRefGoogle Scholar
  44. Müller-Eberhard HJ, (1986) The membrane attack complex of complement Annu Rev Immunol 4:503–528Google Scholar
  45. Needleman P, Turk J, Jakschik BA, Morrison AR & Lefkowitz JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102PubMedCrossRefGoogle Scholar
  46. Palmer RM, Ferrige AG & Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (London) 327:524–526CrossRefGoogle Scholar
  47. Parker PJ, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield MD & Ullrich A (1986) The complete primary structure of protein kinase C - the major phorbol ester receptor. Science 233:853–859PubMedCrossRefGoogle Scholar
  48. Peters T, Gaillard T & Decker K (1990) Tumor necrosis factor-alpha stimulates prostaglandin but not superoxide synthesis in rat Kupffer cells. Eicosanoids 3:115–120PubMedGoogle Scholar
  49. Peters T, Karck U & Decker K (1990) Interdependence of tumor necrosis factor, prostaglandin E2, and protein synthesis in LPS-exposed rat Kupffer cells. Eur J Biochem 191:583–589PubMedCrossRefGoogle Scholar
  50. Ralph P, Jeong G, Welte K, Mertelsmann R, Rabin H, Henderson LE, Souza LM, Boone TC & Robb RJ (1984) Stimulation of immunoglobulin secretion in human B lymphocytes as a direct effect of high concentrations of IL-2. J Immunol 133:2442–2445PubMedGoogle Scholar
  51. Schlayer H-J, Karck U, Ganter U, Hermann R & Decker K (1987) Enhancement of neutrophil adherence to isolated rat liver sinusoidal endothelial cells by supernatants of lipopolysac- charide-activated monocytes - role of tumor necrosis factor. J Hepatol 5:322–331CrossRefGoogle Scholar
  52. Schlayer H-J, Laaf H, Peters T, Woort-Menker M, Estler C, Karck U, Schaefer HE & Decker K (1988) Involvement of tumor necrosis factor in endotoxin-triggered neutrophil adherence to sinusoidal endothelial cells of mouse liver and its modulation in acute phase. J Hepatol 7:239–249PubMedCrossRefGoogle Scholar
  53. Shalaby MR, Aggarwal BB, Rinderknecht E, Svedersky LP, Finkle BS & Palladino MA Jr (1985) Activation of human polymorphonuclear neutrophil functions by interferon-y and tumor necrosis factor. J Immunol 135:2069–2073PubMedGoogle Scholar
  54. Shiratori Y, Geerts A, Ichida T & Wisse E (1986) Collagen production and Kupffer cell-mod- ulated proliferation of fat-storing cells in culture. In: Kirn A, Knook DL & Wisse E (eds) Cells of the hepatic sinusoid. Kupffer Cell Foundation Rijswijk pp 239–245Google Scholar
  55. Teyton L, O’Sullivan D, Dickson PW, Lotteau V, Sette A, Fink P & Peterson PA (1990) Invariant chain distinguishes between the exogenous and endogenous antigen presentation pathways. Nature (London) 348:39–44CrossRefGoogle Scholar
  56. Tran-Thi TA, Gyufko K, Reinke M & Decker K (1988) Output and effects of thromboxane produced by the liver perfused with phorbol myristate acetate. Biol Chem Hoppe-Seyler 369:1179–1184PubMedCrossRefGoogle Scholar
  57. Watson SR, Fennie C & Lasky LA (1991) Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature (London) 349:164–167CrossRefGoogle Scholar
  58. Westphal O, Lüderitz O, Galanos C, Mayer H & Rietschel ETh (1986) The story of bacterial endotoxin. Adv Immunopharmacol, Vol 3. Pergamon Press Oxford pp 13–34Google Scholar
  59. Zuckerman SH, Evans GF, Snyder YM & Roeder WD (1989) Endotoxin-macrophage interaction: post-translational regulation of tumor necrosis factor expression. J Immunol 143:1223–1227PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • K. Decker
    • 1
  1. 1.Biochemisches Institut der Albert-Ludwigs-UniversitätFreiburg i. BrGermany

Personalised recommendations