The Use of Peptide Mimetics to Define the Actin-Binding Sites on the Head of the Myosin Molecule

  • Ian P. Trayer
  • Anita M. Keane
  • Zeki Murad
  • J. Caspar Rüegg
  • K. John Smith


Definition of the molecular mechanisms in muscle contraction and its regulation entails a description of how the components of the organised assembly of proteins first dock with their substrates/partners, then interact and transmit information through the molecular array. Crosslinking studies and experiments with proteolysed fragments of the myosin head (subfragment 1, S1) from a variety of laboratories [e.g. Chaussepied et al., 1986a; Sutoh, 1983] have indicated the approximate regions of the molecule involved in complex formation. In order to define precisely the exact locations of these interfaces we have synthesized peptides based on the S1 sequence and tested these for their ability to bind to actin and influence its biological properties. Such chemical synthesis allows small regions of the parent protein, usually not obtainable by proteolytic or chemical digestion, to be examined in isolation.


Myosin Head Actin Monomer Parent Protein Longe Peptide Crosslinking Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhandari, D.G., Levine, B.A., Trayer, I.P. & Yeadon, M.E. (1986) 1H-NMR study of mobility and conf irmational constraints within the proline-rich N-terminal of the LCl alkaline light chain of skeletal myosin. Correlation with similar segments in other protein systems. Eur. J. Biochem. 160: 349–356.PubMedCrossRefGoogle Scholar
  2. Brewer, S., Tolley, M., Trayer, I.P., Barr, G.C., Dorman, C.J., Higgins, C.F., Evans, J.S., Levine, B.A. & Wormald, M.R. (1990) Structure and function of X-Pro dipeptide repeats in the TonB protein from S.typhimurium and E.coli. J. Mol. Biol. 216: 881–893.CrossRefGoogle Scholar
  3. Chaussepied, P. & Morales, M.F. (1988) Modifying preselected sites on proteins: the stretch of residues 633–642 of the myosin heavy chain is part of the actin-binding site. Proc. Natl. Acad. Sci. USA 85: 7471–7475.PubMedCrossRefGoogle Scholar
  4. Chaussepied, P., Mornet, D., Audemard, E., Kassab, R., Goodearl, A.J., Levine, B.A. & Trayer, I.P. (1986a) Properties of the alkali light chain-20 kilodalton fragment complex from skeletal myosin heads. Biochemistry, 25: 4540–4547.PubMedCrossRefGoogle Scholar
  5. Chaussepied, P., Mornet, D. & Kassab, R. (1986b) Identification of polyphosphate recognition sites communicating with actin sites on skeletal myosin S1. Biochemistry, 25: 6426–6432.PubMedCrossRefGoogle Scholar
  6. Grand, R.J.A. (1982) The structure and function of myosin light chains. Life Sci. Reports, 1: 105–160.Google Scholar
  7. Grand, R.J.A., Henry, G.D., Moir, A., Perry, S.V., Trayer, I.P., Dalgarno, D.C., Levine, B.A. & Parker, S.B. (1983) Modulation by troponin-C of the troponin-I inhibition of skeletal actomyosin interaction. A PMR spectral study. In de Bernard, B., Sottocasa, G.L., Sandri, G., Carafoli, E., Taylor, A.N., Vanaman, T.C. & Williams, R.J.P. (eds): Calcium-binding proteins, 1983. Elsevier Science Publishers, Amsterdam, pp 379–380.Google Scholar
  8. Grand, R.J.A., Levine, B.A. & Perry, S.V. (1982) Proton-magnetic-resonance studies on the interaction of rabbit skeletal-muscle troponin I with troponin C and actin. Biochem. J. 203: 61–68.PubMedGoogle Scholar
  9. Griffiths, A.J. & Trayer, I.P. (1989) Selective cleavage of skeletal myosin subfragment 1 to form a 26kDa peptide which shows ATP sensitive actin binding. FEBS Lett. 242: 275–278.PubMedCrossRefGoogle Scholar
  10. Henry, G.D., Trayer, I.P., Brewer, S. & Levine, B.A. (1985) The widespread distribution of α-N-trimethylalanine as the N-terminal amino acid of light chains from vertebrate striated muscle myosins. Eur. J. Biochem. 148: 75–82.PubMedCrossRefGoogle Scholar
  11. Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Atomic model of the actin filament. Nature, 347: 44–49.PubMedCrossRefGoogle Scholar
  12. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E. & Holmes, K.C. (1990) Atomic structure of the actin: DNase I complex. Nature 347: 37–44.PubMedCrossRefGoogle Scholar
  13. Keane, A.M., Trayer, I.P., Levine, B.A., Zeugner, C. & Rüegg, J.C. (1990) Peptide mimetics of an actin-binding site on myosin span two functional domains on actin. Nature, 344: 265–268.PubMedCrossRefGoogle Scholar
  14. Kraft, Th., Trayer, I.P. & Brenner, B. (1991) Myosin peptides and cross-bridge kinetics. In Rüegg, J.C. (ed): Peptides as probes in muscle research. Springer-Verlag, Heidelberg, (this volume).Google Scholar
  15. Levine, B.A., Moir, A.J.G. & Perry, S.V. (1988) The interaction of troponin-I with the N-terminal region of actin. Eur. J. Biochem. 172: 389–397.PubMedCrossRefGoogle Scholar
  16. Levine, B.A., Moir, A.J.G., Trayer, I.P. & Williams, R.J.P. (1990) Nuclear magnetic resonance studies of calcium modulated proteins and actin-myosin interaction. In Squire, J. (ed): Molecular mechanisms in muscle contraction. McMillan Press, London, pp 171–209.Google Scholar
  17. Milligan, R.A., Whittaker, M. & Safer, D.(1990) Molecular structure of F-actin and location of surface binding sites. Nature, 348: 217–221.PubMedCrossRefGoogle Scholar
  18. Moir, A.J.G., Levine, B.A., Goodearl, A.J. & Trayer, I.P. (1987) The interaction of actin with myosin subfragment 1 and with pPDM-crosslinked S1: a 1H-NMR investigation. J. Muscle Res. & Cell Motil. 8: 68–69.Google Scholar
  19. Muhlrad, A. (1989) Isolation and characterization of the N-terminal 23-kilo Dalton fragment of myosin subfragment 1. Biochemistry, 28: 4002–4010.PubMedCrossRefGoogle Scholar
  20. Prince, H.P., Trayer, H.R., Henry, G.D., Trayer, I.P., Dalgarno, D.C., Levine, B.A., Cary, P.D. & Turner, C. (1981) Proton nmr spectroscopy of myosin subfragment-1 isoenzymes. Eur. J. Biochem. 121: 213–219.PubMedCrossRefGoogle Scholar
  21. Rüegg, J.C., Van Eyk, J., Hodges, R. & Trayer, I.P. (1991) Myosin and troponin peptides affecting Ca -sensitivity of skinned fibres. In Rüegg, J.C. (ed): Peptides as probes in muscle research. Springer-Verlag, Heidelberg, (this volume).Google Scholar
  22. Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence. Biochemistry, 21: 3654–3661.PubMedCrossRefGoogle Scholar
  23. Sutoh, K. (1983) Mapping of actin-binding sites on the heavy chain of myosin subfragment 1. Biochemistry, 22: 1579–1585.PubMedCrossRefGoogle Scholar
  24. Suzuki, R., Nishi, N., Tokura, S. & Morita, F. (1987) F-actin binding synthetic heptapeptide having the amino acid sequence around the SH1 cysteinyl residue of myosin. J. Biol. Chem. 262: 11410–11412.PubMedGoogle Scholar
  25. Suzuki, R., Morita, F., Nishi, N. & Tokura, S. (1990) Inhibition of actomyosin subfragraent 1 ATPase activity by analog peptides of the actin-binding site around the Cys(SHl) of myosin heavy chain. J. Biol. Chem. 265: 4939–4943.PubMedGoogle Scholar
  26. Trayer, H.R. & Trayer, I.P. (1985) Differential binding of rabbit fast muscle myosin light chain isoenzymes to regulated actin. FEBS Lett. 180: 170–174.PubMedCrossRefGoogle Scholar
  27. Trayer, I.P., Trayer, H.R. & Levine, B.A. (1987) Evidence that the N-terminal region of the Al-light chain of myosin interacts directly with the C-terminal region of actin; a proton magnetic resonance study. Eur. J. Biochem. 164: 259–266.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Ian P. Trayer
    • 1
  • Anita M. Keane
    • 1
  • Zeki Murad
    • 1
  • J. Caspar Rüegg
    • 2
  • K. John Smith
    • 1
  1. 1.School of BiochemistryThe University of BirminghamBirminghamUK
  2. 2.II Physiologisches InstitutUniversitat HeidelbergHeidelbergGermany

Personalised recommendations