Radikalfänger-Eigenschaften von Rökan

  • J. Pincemail
  • C. Deby


Die Radikalfänger-Eigenschaften von Rökan wurden in mehreren In-vitro-Modellen untersucht. Die antiradikale Potenz gleicht derjenigen der Harnsäure, die ein Radikalfänger für Hydroxyl- und Diphenylpicrylhydracyl-Radikale ist. Darüber hinaus hemmt Rökan die Bildung von Radikalen, die von der Harnsäure nicht antagonisiert werden, wie z. B. Adriamycylradikale, sowie die Lipidperoxidation der Membranen. Aufgrund der antiradikalen Eigenschaften wirkt Rökan auf die Prostaglandin-Biosynthese stimulierend.


Hydroxyl- Diphenylpicrylhydracyl- Adriamycyl-Radikal Lipidperoxidation Rökan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asakawa,T., Matsushita, S. (1979) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxydes. Lipids 15: 137–140CrossRefGoogle Scholar
  2. 2.
    Chin-San, Lai, Piette, L. H. (1977) Hydroxyl radical production involved in lipid peroxidation of rat liver microsomes. B. B. R. C. 78: 51–59Google Scholar
  3. 3.
    Deby, C., Deby-Dupont, G., Noël, E. X., Lavergne, L. (1981) In vitro and in vivo arachidonic acid conversions into biologically active derivatives are enhanced by uric acid. Biochem. Pharmac. 30: 2243–2249Google Scholar
  4. 4.
    Deby, C., Deby-Dupont, G. (1981) Natural factor modulating the intervention of activated oxygen in the biosynthesis of prostanoids. Clin. Resp. Physiol. 17 (Suppl.): 129–139Google Scholar
  5. 5.
    Deby, C., Deby-Dupont, G., Hans, P, Pincemail, J., Neuray, J., Goutier, R. (1983) Complementary procedures for pro-and antilipoperoxidant activity measurements. Experientia 39: 1113–1115CrossRefGoogle Scholar
  6. 6.
    Deby, C., Magotteau, G. (1970) Relation entre les acides gras essentiels et le taux des antioxydants tissulaires chez la souris. C. R. Soc. Biol. 164: 2675–2681Google Scholar
  7. 7.
    Deby-Dupont, G., Pincemail, J., Braquet, P., Jeuniaux, D., Deby, C. (1983) The effect of a Ginkgo biloba on lipoautoperoxidation and in vivo and in vitro prostacyclin biosynthesis. 24th International Conference on the Biochemistry of Lipids, Toulouse, 14–15 Septembre 1983, Abstract 150 P, p. 117Google Scholar
  8. 8.
    Deby, C., Pincemail, J. (1986) Toxicité de l’oxygène, radicaux libres et moyens de défense. Presse Méd. 15: 1468–1474PubMedGoogle Scholar
  9. 9.
    Egan, R.W., Paxton, J., Kuehl, R. A. (1976) Mechanism for irreversible self-deactivation of prostaglandin synthetase. J. Biol. Chem. 251: 7329–7335PubMedGoogle Scholar
  10. 10.
    Ernster, L., Nordenbrand, K. (1967) In: Methods in enzymology, Vol. 10. Estabrook, R.W., Pullman, M. E. (Eds.). Academic Press, New York, p. 574Google Scholar
  11. 11.
    Etienne, A., Chapelat, M.Y., Braquet, M., Clostre, E, Drieu, K., DeFeudis, E V., Braquet, P. (1983) In vivo studies of free radical scavenging activity. Relation to cerebral ischemia. In: Cerebral Ischemia. Bes,A., Braquet, P., Paoletti, R., Siesjö, L. (Eds.). Excerpta Medica, Amsterdam, pp. 379–384Google Scholar
  12. 12.
    Flohé, L. (1979) Glutathion peroxidate: fact and fiction. In: Oxygen free radicals and tissue damage. Ciba Foundation Symposium, Excerpta Medica, Amsterdam, pp. 95–121Google Scholar
  13. 13.
    Fong, K. L., Mac Kay, P. B., Poyer, J. L., Keele, B. B., Misra, H. (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flaying enzyme activity. J. Biol. Chem. 248: 7792–7797PubMedGoogle Scholar
  14. 14.
    Fridovich, I. (1975) Superoxyde dismutase. Ann. Rev. Biochem. 44: 19–43CrossRefGoogle Scholar
  15. 15.
    Haber, F., Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc. London, B, 147, pp. 332–351CrossRefGoogle Scholar
  16. 16.
    Halliwell, B.,Ahluwalia, S. (1976) Hydroxylation of p-coumaric acid by horseradish peroxidase. Biochem. J. 153: 513–518PubMedGoogle Scholar
  17. 17.
    Lehninger, A. (1981) Biochimie. Chapitre 18. Les enzymes d’oxydo-réduction et le transport d’électrons. Flammarion, Paris, p. 497Google Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265PubMedGoogle Scholar
  19. 19.
    Pidoux, B., Bastien, C., Niddam, S. (1984) Normalization electroencephalographie activity in ageing brain by an extract of Ginkgo biloba. In: Cerebral Ischemia. Bes,A., Braquet, P., Paoletti, R., Siesjö, K. (Eds.). Excerpta Medica, Amsterdam, pp. 385–388Google Scholar
  20. 20.
    Pincemail, J.,Thirion, A., Dupuis, M., Braquet, P., Drieu, K., Deby, C. (in Druck) Ginkgo biloba extract inhibits oxygen species production generated by phorbol myristate acetate stimulated human leukocytes. ExperientiaGoogle Scholar
  21. 21.
    Sato, S., Iwaizumi, M., Handa, K.,Tamura,Y. (1977) Electron spin resonance study on the mode of generation of free radicals of daunomycin, adriamycin and cardoquinone in NAD ( P) H-microsome system. Gann 68: 603–608Google Scholar
  22. 22.
    Sugioka, K., Nakano, H., Nakano, M. (1983) Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation. Biochim. Biophys. Acta 753: 411–421PubMedGoogle Scholar
  23. 23.
    Van Caneghem, P., Deby, C., Bacq, Z. M. (1982) Protection par l’acide urique de l’acide hyaluronique contre la dépolymérisation par un rayonnement ionisant. C. R. Soc. Biol. 176: 391Google Scholar
  24. 24.
    Weiss, S. J., Rustaji, P. K., Lo Buglio,A. E (1978) Human granulocyte generation of hydroxyl radical. J. Exp. Med. 147: 316–323PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag · Heidelberg 1991

Authors and Affiliations

  • J. Pincemail
  • C. Deby

There are no affiliations available

Personalised recommendations