Advertisement

Computer Simulations for Polymer Dynamics

  • K. Kremer
  • G. S. Grest
  • B. Dünweg
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 53)

Abstract

In this paper we review recent work on the dynamics of polymeric systems using computer simulation methods. For a two-dimensional polymer melt, we show that the chains segregate and the dynamics can be described very well by the Rouse model. This simulation was carried out using the bond fluctuation Monte Carlo method. For three-dimensional (3d) melts and for the study of hydrodynamic effects, we use a molecular dynamics simulation. For 3d melts our results strongly support the concept of reptation. A detailed comparison to experiment shows that we can predict the time and length scales for the onset of reptation for a variety of polymeric liquids. For a single chain, we find the expected hydrodynamic scaling for the mean square displacement and dynamic scattering function.

Keywords

Monte Carlo Diffusion Constant Hydrodynamic Interaction Heat Bath Persistence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Baumgärtner, Ann. Rev. Phys. Chem. 35, 419 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    K. Kremer and K. Binder, Comp. Phys. Rept. 7, 261 (1989).Google Scholar
  3. 3.
    K. Binder, in Molecular Level Calculations of the Structure and Properties of Non-Crystalline Polymers, edited by J. Biscerano (Dekker, New York, 1989).Google Scholar
  4. 4.
    I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    I. Carmesin and K. Kremer, J. Phys. (Paris), 1990.Google Scholar
  6. 6.
    K. Kremer, G. S. Grest, and I. Carmesin, Phys. Rev. Lett. 61, 566 (1988); K. Kremer and G. S. Grest, J. Chem. Phys., 92, 5057, 1990.ADSCrossRefGoogle Scholar
  7. 7.
    G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    B. Dünweg and K. Kremer, (to be published, 1990).Google Scholar
  9. 9.
    K. Kremer and G. S. Grest, in Computer Simulations of Polymers, edited by R. J. Roe (to be published).Google Scholar
  10. 10.
    D. Rigby and R. J. Roe, J. Chem. Phys. 87, 7285 (1987); 89, 5280 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. R. Clarke and D. Brown, Mol. Sim. 3, 27 (1989).CrossRefGoogle Scholar
  12. 12.
    W. Jilge, I. Carmesin, K. Kremer, and K. Binder, (to be published, 1990).Google Scholar
  13. 13.
    J. Batoulis, N. Pistoor, K. Kremer, and H. L. Frisch, Electrophoresis 10, 442 (1989).CrossRefGoogle Scholar
  14. 14.
    H. P. Wittmann, K. Kremer, and K. Binder (to be published,, 1990).Google Scholar
  15. 15.
    A. Lopez Rodriguez, H. P. Wittmann, and K. Binder (to be published, 1990).Google Scholar
  16. 16.
    G. S. Grest, K. Kremer, and T. A. Witten, Macromolecules 20, 1376 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    G. S. Grest, K. Kremer, S. T. Milner, and T. A. Witten, Macromolecules 22, 1904 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    M. Murat and G. S. Grest, Phys. Rev. Lett. 63, 1074 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    F. Abraham, W. E. Rudge and M. Plischke, Phys. Rev. Lett. 62, 1757 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    G. S. Grest and M. Murat, J. Phys. (Paris), 1990.Google Scholar
  21. 21.
    K. Kremer, J. Phys. (Paris) 47, 1269 (1986).CrossRefGoogle Scholar
  22. 22.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca NY 1979).Google Scholar
  23. 23.
    P. E. Rouse, J. Ciem. Phys. 21, 1273 (1953).ADSGoogle Scholar
  24. 24.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
  25. 25.
    H. P. Wittmann and K. Kremer (to be published, 1990).Google Scholar
  26. 26.
    R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1977), Vol. 1.Google Scholar
  27. 27.
    S.F.E. Dwards, Proc. Phys. Soc. 92, 9 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    P. G. de Gennes, J. Chem. Phys. 55, 572 (1971).ADSCrossRefGoogle Scholar
  29. 29.
    T. P. Lodge, N. A. Rotstein and S. Prager, Adv. Chem. Phys. (to be published, 1990).Google Scholar
  30. 30.
    C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ (1971).Google Scholar
  31. 31.
    G. S. Grest, B. Dünweg, and K. Kremer, Comp. Phys. Comm. 55, 269 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    J. S. Higgins and J. E. Roots, J. Ciem. Soc. Faraday Trans. 2 81, 757 (1985).CrossRefGoogle Scholar
  33. 33.
    D. Richter, A. Baumgärtner, K. Binder, B. Ewen, and J. B. Hayter, Phys. Rev. Lett. 47, 109 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    D. S. Pearson, G. Verstrate, E. von Meerwall, and F. C. Schilling, Macro-molecules 20, 1133 (1987).ADSCrossRefGoogle Scholar
  35. 35.
    M. Antonietti, H. K. Foelsch, and H. Sillescu, Makrom. Chem. 188, 2317 (1987).CrossRefGoogle Scholar
  36. 36.
    D. Richter, B. Farago, C. Lartique, L. J. Fetters, J. S. Huang, and B. Ewen, (to be published, 1990).Google Scholar
  37. 37.
    K. Kremer and K. Binder, J. Chem. Phys. 81, 6381 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    B. Zimm, J. Ciem. Phys. 24, 269 (1956).MathSciNetADSGoogle Scholar
  39. 39.
    J. des Cloizeaux, J. Phys. Lett. (Paris) 39, L-151 (1978).Google Scholar
  40. 40.
    J. Batoulis and K. Kremer, Macromolecules 22, 4277 (1989).ADSCrossRefGoogle Scholar
  41. 41.
    B. Dünweg, in preparation, 1990.Google Scholar
  42. 42.
    C. W. J. Beenakker, J. Ciem. Phys. 85, 1581 (1986).ADSGoogle Scholar
  43. 43.
    B. Minchau, B. Dünweg, K. Binder (to appear in Polymer Communications, 1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • K. Kremer
    • 1
  • G. S. Grest
    • 2
  • B. Dünweg
    • 3
  1. 1.Institut für Festkörperforschung, Forschungszentrum JülichJülichFed. Rep. of Germany
  2. 2.Corporate Research Science LaboratoriesExxon Research and Engineering CompanyAnnandaleUSA
  3. 3.Institut fur PhysikUniversität MainzMainzFed. Rep. of Germany

Personalised recommendations