Electrochromic dc Sputtered Nickel-Oxide-Based Films: Optical Structural, and Electrochemical Characterization

  • W. Estrada
  • A. M. Andersson
  • C. G. Granqvist
  • A. Gorenstein
  • F. Decker
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 62)


NiO films were made by dc magnetron sputtering of Ni in O2. The grain size was ~10 nm and the crystal structure was cubic. Subsequent electrochemical treatment in KOH established electrochromism. The material was studied by cyclic voltammetry, in situ measurements of optical transmittance and mechanical stress, spectral infrared reflectometry, and spectrophotometric measurements in the 0.35–2.5 μm range. Electrochemical data showed that electrochromic bleaching was associated with proton insertion. P-polarized infrared reflectance showed OH stretching vibrations representative of “free” OH for the bleached state and OH in the presence of hydrogen bonds for the coloured state. The luminous and solar transmittance could be varied between 80% and 20% and between 74% and 24%, respectively. The electrochromism is produced by absorption modulation.


Coloured State Electrochemical Treatment Bleached State Smart Window Swedish Natural Science Research Council 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Lampert and C.G. Granqvist, editors, Large-area Chromogenics: Materials and Devices for Transmittance Control (SPIE Opt. Engr. Press, Bellingham, USA, 1990)Google Scholar
  2. 2.
    M.K. Carpenter and D.A. Corrigan, editors, Proc. Symp. Electrochromic Mater.(The Electrochem. Soc., Pennington, USA, 1990), Vol. 90–2.Google Scholar
  3. 3.
    T.S. Eriksson and C.G. Granqvist, J. Appl. Phys. 2081 (1986)Google Scholar
  4. 4.
    W. Estrada, A.M. Andersson and C.G. Granqvist, J. Appl. Phys. 64 3678 (1988)CrossRefGoogle Scholar
  5. 5.
    S.J. Jiang and C.G. Granqvist, Proc. SPIE 562, 129 (1985)Google Scholar
  6. 6.
    W. Estrada, Ph.D. Thesis, Facultad de Ciencias, Universidad Nacional de Ingenieria, Lima, Peru, 1990Google Scholar
  7. 7.
    J. Scarminio, S.N. Sahu and F. Decker, J. Phys. E 22, 755 (1989)CrossRefGoogle Scholar
  8. 8.
    Z.M. Jarzebski, “Oxide Semiconductors”, Pergamon Press, Oxford Vol. 4 (1973)Google Scholar
  9. 9.
    G. Wyszecki and W.S Stiles, Color Science, 2nd edition (Wiley, New York, 1982), p.256Google Scholar
  10. 10.
    M.P. Thekaekara, in Solar Energy Engineering, edited by A.M. Sayigh (Academic, New York, 1977)Google Scholar
  11. 11.
    J.S.E.M. Svensson and C.G. Granqvist, Appl. Phys. Lett. 49, 1566 (1986)CrossRefGoogle Scholar
  12. 12.
    F.P. Kober, J. Electrochem. Soc. 112, 1064(1965)CrossRefGoogle Scholar
  13. F.P. Kober, J. Electrochem. Soc. 114, 215 (1967)CrossRefGoogle Scholar
  14. 13.
    S. Mochizuki, Phys. Stat. Sol. B 126, 105(1984)CrossRefGoogle Scholar
  15. 14.
    P.J. Lucchesi and W.A. Glasson, J. Am. Chem. Soc. 78, 1347(1956)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. Estrada
    • 1
  • A. M. Andersson
    • 2
  • C. G. Granqvist
    • 2
  • A. Gorenstein
    • 3
  • F. Decker
    • 3
  1. 1.Facultad de CienciasUniversidad Nacional de IngenieríaLimaPeru
  2. 2.Physics DepartmentChalmers University of Technology and University of GothenburgGothenburgSweden
  3. 3.DFA/IFGWUNICAMPCampinasBrazil

Personalised recommendations