Skip to main content

Dense Deuterium and Deuterium-Muon Systems

  • Conference paper
Exotic Atoms in Condensed Matter

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 59))

  • 99 Accesses

Abstract

The states of dense deuterium are treated starting with the fundamental highly symmetric Hamiltonian where all interactions are entirely Coulombic. Such a system is known to be unstable to deuteron pairing and crystalline ordering at low densities; experimentally it has been probed to densities an order of magnitude higher than normal solid density. At densities somewhat higher than this deuterium is predicted to undergo a dynamic instability to a monatomic metallic state passing on its way through a paired band-overlap phase. Some of the pairing characteristics are immediately transferable to the states formed when positive or negative muons are introduced into dense deuterium.

Work supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. G.D. Mahan, “Many Particle Physics” (Plenum, N.Y., 1983), Ch. 5.

    Google Scholar 

  2. See, for example, H.E. Lorenzana, I.F. Silvera, and K.A. Goettel, Phys. Rev. Lett. 64, 1939 (1990).

    Article  ADS  Google Scholar 

  3. I. Silvera, Rev. Mod. Phys. 52, 393 (1980).

    Article  ADS  Google Scholar 

  4. R.J. Hemley, H.K. Mao, and J.F. Shu, to be published.

    Google Scholar 

  5. N.W. Ashcroft, Phys. Rev. B 41, 10963 (1990).

    Article  ADS  Google Scholar 

  6. K. Takemura, S. Miromura, O. Shimomura, and K. Fujii, Phys. Rev. Lett. 45, 1881 (1980).

    Article  ADS  Google Scholar 

  7. N.W. Ashcroft and N.D. Mermin, “Solid State Physics” (Holt Saunders, N.Y., 1976).

    Google Scholar 

  8. C. Friedli and N.W. Ashcroft, Phys. Rev. B 16, 662 (1977).

    Article  ADS  Google Scholar 

  9. N.F. Mott, Proc. Phys. Soc. A 62, 416 (1949).

    Article  ADS  Google Scholar 

  10. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1981).

    Article  ADS  Google Scholar 

  11. E.G. Brovman and Yu. Kagan, Sov. Phys. — JETP 30, 721 (1970);

    ADS  Google Scholar 

  12. E.G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. — JETP 34, 1300 (1972).

    ADS  Google Scholar 

  13. J. Hammerberg and N.W. Ashcroft, Phys. Rev. B 9, 409 (1974).

    Article  ADS  Google Scholar 

  14. Or perhaps more realistically a “metallic” cluster formed by beam cooling techniques. Low energy muon beams are discussed by Nagamine in the Proceedings of this Workshop. For general references on muons in condensed matter, see “Muon Physics,” Vernon W. Hughes and C. S. Chu, eds. (Academic Press, N.Y., 1977), Volumes I, II, and III.

    Google Scholar 

  15. The Einstein frequency rises to well above 10,000 K, and this sets the scale for any phonon mediated pairing mechanism for electrons. Superconductive pairing in such a remote system would have a scale about 3 times what is expected for metallic hydrogen.

    Google Scholar 

  16. Strictly speaking the argument applies to a vibron band (see Ref. 5).

    Google Scholar 

  17. See, for example, S. Flügge, P. Walger, and A. Weiguny, J. Mol. Spectros. 23, 243 (1967).

    Article  ADS  Google Scholar 

  18. R. Hemley and H.K. Mao, Phys. Rev. Lett. 61, 857 (1988).

    Article  ADS  Google Scholar 

  19. V.P. Glazkov, S. P. Besedin, I.N. Goncharenko, A.V. Irodava, I.N. Makarenko, V.A. Somenkov, S.M. Stishov, and S. Shil’stein, JETP Lett. 47, 763 (1988).

    ADS  Google Scholar 

  20. T. Kato, Comm. Pure Appl. Math. 10, 151 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  21. Ya. B. Zel’dovich and S.S. Gerstein, Sov. Phys. Usp. 3, 593 (1961). See also K. Fukustima and F. Iseki, Muon Catalyzed Fusion 1, 225 (1987).

    Article  ADS  Google Scholar 

  22. N.W. Ashcroft, to be published.

    Google Scholar 

  23. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 41, 6500 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Ashcroft, N.W. (1992). Dense Deuterium and Deuterium-Muon Systems. In: Benedek, G., Schneuwly, H. (eds) Exotic Atoms in Condensed Matter. Springer Proceedings in Physics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76370-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76370-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76372-4

  • Online ISBN: 978-3-642-76370-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics