Skip to main content

Baroreflexes in Congestive Heart Failure

  • Chapter
Baroreceptor Reflexes
  • 176 Accesses

Abstract

It has been known for many years that clinical congestive heart failure is accompanied by a neurohumoral excitatory state characterized by increased levels of norepinephrine and of muscle sympathetic nerve activity, plasma renin and vasopressin activity, increased circulating angiotensin II, and aldosterone. These neurohumoral mechanisms augment peripheral vasoconstriction and sodium retention by the kidney and are the hallmarks of clinical congestive heart failure. A similar neurohumoral excitatory state can be provoked in normal animals following acute interruption of sensory input from the arterial baroreceptors and from cardiac receptors with afferent vagal fibers [1]. We have previously suggested that the neurohumoral excitatory state could result in part from baroreflex abnormalities which may be present in congestive heart failure [2]. If this is so, then it is possible that such abnormalities could be present in the afferent limb of these reflexes, in the CNS, or in the neuroeffector mechanisms. Whether or not baroreflexes play an important causal role in the development of the neurohumoral excitatory rate, abnormalities of these reflexes still may be important in terms of interfering with the normal adaptive mechanisms for dealing with cardiovascular stresses to which humans are normally exposed. For example, exercise and emotion produce sympathoexcitation, tachycardia, and hypertension, which are modulated by baroreflex mechanisms.

Supported by HL30506 and by funds from the Veterans Administration. Dr. Dibner- Dunlap is a Research Associate Awardee of the Veterans Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud FM, Thames MD (1983) Interaction of cardiovascular reflexes in circulatory control. In: Shepherd T, Abboud FM (eds) Peripheral circulatory organ blood flow. Am Physiological Society, Washington, pp 675–753 (Handbook of physiology, vol 3 )

    Google Scholar 

  2. Abboud FM, Thames MD, Mark AL (1981) Role of afferent nerves in the regulation of the circulation during coronary occlusion and heart failure. In: Abboud FM, Fozzard HA, Gilmore JP, Reis DJ (eds) Disturbances in neurogenic control of the circulation. Am Physiological Society, Bethesda, pp 65–86

    Google Scholar 

  3. Niebauer MJ, Zucker IH (1985) Static and dynamic responses of carotid sinus baroreceptors in dogs with chronic volume overload. J Physiol (Lond) 369: 295–310

    CAS  Google Scholar 

  4. Niebauer MJ, Holmberg MJ, Zucker IH (1986) Aortic baroreceptor characteristics in dogs with chronic high output failure. Basic Res Cardiol 8: 111–122

    Article  Google Scholar 

  5. Whipple GH, Sheffield LT, Woodman EG, et al. (1962) Reversible congestive heart failure due to rapid stimulation of the normal heart. Proc N Engl Cardiovasc Soc 20: 39

    Google Scholar 

  6. Coleman HN, Taylor RR, Pool PE, et al. (1971) Congestive heart failure following chronic tachycardia. Am Heart J 81: 790–798

    Article  PubMed  Google Scholar 

  7. Dibner-Dunlap ME, Thames MD (1990) A simplified method for the production of heart failure by rapid ventricular pacing in the dog. Am J Med Sci (in press)

    Google Scholar 

  8. Wang W, Chen J-S, Zucker IH (1990) Carotid sinus baroreceptor sensitivity in experimental heart failure. Circ Res 81: 1959–1966

    CAS  Google Scholar 

  9. Dibner-Dunlap ME, Thames MD (1989) Reflex control of renal sympathetic nerve activity is preserved in heart failure despite reduced arterial baroreceptor sensitivity. Circ Res 65: 1526, 1535

    Google Scholar 

  10. Greenberg TT, Richmond WH, Stocking RA, Gupta PD, Meehan JP, Henry JP (1973) Impaired atrial receptor responses in dogs with heart failure due to tricuspid insufficiency and pulmonary artery stenosis. Circ Res 32: 424–433

    PubMed  CAS  Google Scholar 

  11. Zucker IH, Earle AM, Gilmore JP (1977) The mechanism of adaptation of left atrial stretch receptors in dogs with chronic congestive heart failure. J Clin Invest 60: 323–331

    Article  PubMed  CAS  Google Scholar 

  12. Mukharji J, Thames MD, Newton M, Hirsh PD, Lewis SA, Rehr RB, Cowley MJ, Hess ML, Hastillo A, Lower RR, Vetrove GW (1987) Contrast injection bradycardia during coronary angiography: effects in the denervated heart. J Heart Transplant 6: 44–48

    PubMed  CAS  Google Scholar 

  13. Arrowood JA, Mohanty PK, Hodgson J McB, Dibner-Dunlap ME, Thames MD (1989) Ventricular sensory endings indicate reflex bradycardia during coronary arteriography in humans. Circ 80: 1293–1300

    CAS  Google Scholar 

  14. Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285: 877–883

    Article  PubMed  CAS  Google Scholar 

  15. Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreceptor sensitivity. Circ Res 24: 109–121

    PubMed  CAS  Google Scholar 

  16. White CW (1981) Abnormalities in baroreflex control of heart rate in canine heart failure. Am J Physiol 240: H793–H799

    PubMed  CAS  Google Scholar 

  17. Dibner-Dunlap ME, Thames MD (1989) Arterial baroreflexes are preserved until late in the course of developing heart failure. FASEB J 3: A858

    Google Scholar 

  18. Howard RJ, Moe GW, Angus C, Armstrong PW (1989) Serial changes in baroreflex mediated heart rate response to nitroprusside in evolving experimental heart failure. Circ 80: 11–12

    Google Scholar 

  19. Chen JS, Wang W, Bartholet T, Zucker IH (1990) Analysis of baroreflex control of heart rate in conscious dogs with pacing-induced heart failure. Circulation (in press)

    Google Scholar 

  20. Zucker IH, Wang W, Chen JS (1989) Carotid sinus baroreceptor reflex in dogs with experimental heart failure. Circulation 80: 11–393

    Google Scholar 

  21. Guo GB, Thames MD, Abboud FM (1983) Arterial baroreflexes in renal hypertensive rabbits: selectivity and redundancy of baroreceptor influence on heart rate, vascular resistance, and lumbar sympathetic nerve activity. Circ Res 53: 223–234

    PubMed  CAS  Google Scholar 

  22. Berg WJ, Kempf JS, Burke TG, Ferguson DW (1989) Blunted baroreflex control of sympathetic neural activity in human heart failure. Circulation 80: 11–394

    Google Scholar 

  23. Minisi AJ, Dibner-Dunlap ME, Thames MD (1989) Vagal cardiopulmonary baroreflex activation during phenylephrine infusion. Am J Physiol 257: R1147–R1153

    PubMed  CAS  Google Scholar 

  24. Guo GB, Abboud FM (1984) Impaired central mediation of the arterial baroreflex in chronic renal hypertension. Am J Physiol 246: H720–H727

    PubMed  CAS  Google Scholar 

  25. Ferguson DW, Abboud FM, Mark AL (1984) Selective impairment of baroreflex- mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation 69: 451–460

    Article  PubMed  CAS  Google Scholar 

  26. Dibner-Dunlap ME, Thames MD (1989) Atrial mechanoreflex control of renal sympathetic nerve activity (RNA) is blunted in heart failure. Circulation 80: 11–393

    Google Scholar 

  27. Zucker IH, Gorman AJ, Cornish KG, Lang M (1985) Impaired atrial receptor modulation of renal nerve activity in dogs with chronic volume overload. Cardiovasc Res 19: 411–418

    Article  PubMed  CAS  Google Scholar 

  28. Mohanty PK, Arrowood JA, Ellenbogen KA, Thames MD (1989) Neurohumoral and hemodynamic effects of lower body negative pressure in patients with congestive heart failure. Am Heart J 118: 78–85

    Article  PubMed  CAS  Google Scholar 

  29. Quest JA, Gillis RA (1974) Effect of digitalis on carotid sinus baroreceptor activity. Circ Res 35: 247–255

    CAS  Google Scholar 

  30. Thames MD, Waickman LA, Abboud FM (1980) Sensitization of cardiac receptors (vagal afferents) by intracoronary acetylstrophanthidin. Am J Physiol 239: H628–H635

    PubMed  CAS  Google Scholar 

  31. Gilmore JP, Zucker H (1979) Activity of atrial receptors under normal and pathological states. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, pp 139–156

    Google Scholar 

  32. Thames MD, Miller BM, Abboud FM (1982) Sensitization of vagal cardiopulmonary baroreflex by chronic digoxin. Am J Physiol 243: H815–818

    PubMed  CAS  Google Scholar 

  33. Ferguson DW (1990) Baroreflex-mediated circulatory control in human heart failure. Heart Failure 6: 3–11

    Google Scholar 

  34. Barron KW, Trapani AJ, Gordon FJ, Brody MJ (1989) Baroreceptor denervation profoundly enhances cardiovascular responses to central angiotensin II. Am J Physiol 257: H314–H323

    PubMed  CAS  Google Scholar 

  35. Abrams WB, Davies RO, Ferguson RK (1984) Overview: the role of angiotensin converting enzyme inhibitors in cardiovascular therapy. Fed Proc 43: 1314–1321

    PubMed  CAS  Google Scholar 

  36. Vogt A, Unterberg C, Kreuzer H (1987) Acute effects of the new angiotensin converting enzyme inhibitor ramipril on hemodynamics and carotid sinus baroreflex activity in congestive heart failure. Am J Cardiol 59: 149D–154D

    Article  PubMed  CAS  Google Scholar 

  37. Ellenbogen KA, Mohanty PK, Szentpetery S, Thames MD (1989) Arterial baroreflex abnormalities in heart failure: reversal after orthotopic cardiac transplantation. Circulation 79: 51–58

    Article  PubMed  CAS  Google Scholar 

  38. White CW (1981) Reversibility of abnormal arterial baroreflex control of heart rate in heart failure. Am J Physiol 241: H778–782

    PubMed  CAS  Google Scholar 

  39. Mohanty PK, Thames MD, Sowers JR, McNamara C, Szentpetery S (1987) Impairment of cardiopulmonary baroreflex following cardiac transplantation in humans. Circulation 75: 914–921

    Article  PubMed  CAS  Google Scholar 

  40. Victor R, Scherrer U, Vissing S, Morgan B, Urias L, Hansen P (1988) Orthostatic stress activates sympathetic outflow in patients with heart transplants. Circulation 78: 11–365

    Google Scholar 

  41. Zucker IH, Earle AM, Gilmore JP (1979) Changes in the sensitivity of left atrial receptors following reversal of heart failure. Am J Physiol 327: H555–H559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thames, M.D., Dibner-Dunlap, M.E. (1991). Baroreflexes in Congestive Heart Failure. In: Persson, P.B., Kirchheim, H.R. (eds) Baroreceptor Reflexes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76366-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76366-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76368-7

  • Online ISBN: 978-3-642-76366-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics