Skip to main content

Boc-Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-2-Phenylethyl Ester — JMV180: A Unique CCK Analogue with Different Actions on High- and Low-Affinity CCK Receptors

  • Chapter
Cholecystokinin Antagonists in Gastroenterology

Abstract

During investigations into the structure activity relationships of chole-cystokinin (CCK), it soon became apparent that the C-terminal portion of the CCK molecule, more particularly the C-terminal phenylalanine residue, was of crucial importance for the complete biological activity of CCK analogues, both in the peripheral system and in the CNS. Suppression of the C-terminal phenylalanine residue, e.g., Z-CCK-27–32-NH2 [Z-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-NH2], led to CCK antagonists both in the peripheral system [1] and in the CNS [2,3]. We report here on the modulations in activity which resulted from suppression of the C-terminal primary amide function of CCK, and on its pharmacological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spanarkel M, Martinez J, Briet C, Jensen RT, Gardner JD (1983) Cholecystokinin-27–32-amide a member of a new class of cholecystokinin receptor antagonists. J Biol Chem 258:6746–6749

    PubMed  CAS  Google Scholar 

  2. Worms P, Martinez J, Briet J, Castro B, Biziere K (1986) Evidence for dopaminomimetic effect of intrastriatally injected cholecystokinin octapeptide in mice. Eur J Pharmacol 121:395–401

    Article  PubMed  CAS  Google Scholar 

  3. MacVicar B, Kerrin JP, Davidson JS (1987) Inhibition of synaptic transmission in the hippocampus by cholecystokinin (CCK) and its antagonism by a CCK analog (CCK27–33) Brain Res 406:130–135

    PubMed  CAS  Google Scholar 

  4. Sankaran H, Goldfine ID, Bailey A, Licko V, Williams JA (1982) Relationship of cholecystokinin receptor binding to regulation of biological functions in pancreatic acini. Am J Physiol 242:G250–G257

    PubMed  CAS  Google Scholar 

  5. Williams JA, Bailey AC, Roach E (1988) Temperature dependence of high-affinity CCK receptor binding and CCK internalization in rat pancreatic acini. Am J Physiol 254:G513–G521

    PubMed  CAS  Google Scholar 

  6. Sankaran H, Goldfine ID, Deveney CW, Wong EY, Williams JA (1980) Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J Biol Chem 255:1849–1853

    PubMed  CAS  Google Scholar 

  7. Younes M, Jensen RT, Gardner JD (1987) Cholecystokinin-induced residual stimulation of enzyme secretion from mouse pancreatic acini. Biochim Biophys Acta 930:410–418

    Article  PubMed  CAS  Google Scholar 

  8. Fulcrand P, Rodriguez M, Galas MC, Lignon MF, Laur J, Aumelas A, Martinez J (1988) 2-Phenylethylester and 2-phenylethylamide derivatives analogues of the C-terminal hepta- and octa-peptide of cholecystokinin. Int J Pept Protein Res 32:384–395

    Article  PubMed  CAS  Google Scholar 

  9. Galas MC, Lignon MF, Rodriguez M, Mendre C, Fulcrand P, Laur J, Aumelas A, Martinez J (1988) Structure activity relationship studies on cholecystokinin: analogues with partial agonist activity. Am J Physiol 254:G176–G182

    PubMed  CAS  Google Scholar 

  10. Rodriguez M, Lignon MF, Mendre C, Galas MC, Martinez J (1987) Synthesis of pseudopeptide analogues of the C-terminal heptapeptide of cholecystokinin and preliminary results on their in vitro activity on stimulation of amylase release from rat pancreatic acini. In: Theodoropoulos D (ed) Peptides 1986. 19th European peptide symposium, de Gruyter, Berlin, pp 455–458

    Google Scholar 

  11. Stark HA, Sharp CM, Stuliff VE, Martinez J, Jensen RT, Gardner JD (1989) CCK-JMV-180: a peptide that distinguishes high-affinity cholecystokinin receptors from low-affinity cholecystokinin receptors. Biochim Biophys Acta 1010: 145–150

    Article  PubMed  CAS  Google Scholar 

  12. Matozaki T, Martinez J, Williams JA (1989) A new CCK analogue differentiates two functionally distinct CCK receptors in rat and mouse pancreatic acini. Am J Physiol 257:G594–G600

    PubMed  CAS  Google Scholar 

  13. Gaisano HY, Klueppelberg UG, Pinon DI, Pfenning MA, Powers SP, Miller LJ (1989) Novel tool for the study of cholecystokinin-stimulated pancreatic enzyme secretion. J Clin Invest 83:321–325

    Article  PubMed  CAS  Google Scholar 

  14. Molero X, Hadac E, Miller LJ (1990) The type A cholecystokinin (CCK) receptor on gallbladder membranes exists in two-G-protein-regulated affinity. Gastroenterology 98:A511

    Google Scholar 

  15. Abdelmoumene S, Gardner JD (1980) Cholecystokinin-induced desensitization in dispersed acini from guinea pig pancreas. Am J Physiol 239:G272–G279

    PubMed  CAS  Google Scholar 

  16. Menozzi D, Stark HA, Martinez J, Jensen RT, Gardner JD (1989) Cholecystokinin (CCK)-induced desensitization of pancreatic enzyme secretion is mediated by low affinity CCK receptors. Peptides 10:337–341

    Article  PubMed  CAS  Google Scholar 

  17. Streb H, Heslop JP, Irvine RF, Schulz I, Berridge MJ (1985) Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells. J Biol Chem 260:7309–7315

    PubMed  CAS  Google Scholar 

  18. Merritt JE, Taylor CW, Rubin RP, Putney JW Jr (1986) Isomers of inositol triphosphate in exocrine pancreas. Biochem J 238:825–839

    PubMed  CAS  Google Scholar 

  19. Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    PubMed  CAS  Google Scholar 

  20. Noguchi M, Adachi H, Gardner JD, Jensen RT (1985) Calcium-activated, phospholipid-dependent protein kinase in pancreatic acinar cells. Am J Physiol 248:G692–G701

    PubMed  CAS  Google Scholar 

  21. Pandol SJ, Schoeffield MS, Sachs G, Muallem S (1985) Role of free cytosolic calcium in secretagogue-stimulated amylase release from dispersed acini from guinea pig pancreas. J Biol Chem 260:10081–10086

    PubMed  CAS  Google Scholar 

  22. Merritt JE, Rubin RP (1985) Pancreatic amylase secretion and cytoplasmic free calcium. Effects of ionomycin, phorbol dibutyrate and diacylglycerols alone and in combination. Biochem J 230:151–159

    PubMed  CAS  Google Scholar 

  23. Burnham DP, Munowitz P, Hootman SR, Williams JA (1986) Regulation of protein phosphorylation in pancreatic acini. Distinct effects of calcium ionophore A23187 and 12-O-tetradecanoylphorbol 13-acetate. Biochem J 235:125–131

    PubMed  CAS  Google Scholar 

  24. Lignon MF, Galas MC, Rodriguez M, Martinez J (1990) Correlation between phospholipid breakdown, intracellular calcium mobilization and enzyme secretion in rat pancreatic acini treated with Boc-[Nle28,Nle31]-CCK-7 and JMV180, two cholecystokinin analogues. Cell Sign 2:339–346

    Article  CAS  Google Scholar 

  25. Sato S, Stark HA, Martinez J, Beaven MA, Jensen RT, Gardner JD (1989) Receptor occupation, calcium mobilization, and amylase release in pancreatic acini: effects of CCK-JMV-180. Am J Physiol 257:G202–G209

    PubMed  CAS  Google Scholar 

  26. Matozaki T, Göke B, Tsunoda Y, Rodriguez M, Martinez J, Williams JA (1990) Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. J Biol Chem 265:6247–6254

    PubMed  CAS  Google Scholar 

  27. Tsunoda Y, Stuenkel E, Williams JA (1990) Oscillatory mode of calcium signaling in rat pancreatic acinar cells. Am J Physiol 258:047–055

    Google Scholar 

  28. Lignon MF, Galas MC, Rodriguez M, Guillon G, Jard S, Martinez J (1987) A CCK analogue that exhibits part of the CCK response on rat pancreatic acini: relationship among amylase release, receptor affinity and phosphoinositide breakdown. In: Bali JP, Martinez J (eds) Gastrin and cholecystokinin: chemistry, physiology and pharmacology. Elsevier, Amsterdam, pp 57–61

    Google Scholar 

  29. Martinez J, Rodriguez M, Lignon MF, Galas MC (1988) Selective cholecystokinin receptor antagonists. In: Wang R, Schoenfeld R (eds) Cholecystokinin antagonists, neurology and neurobiology, vol 47. Liss, New York, pp 29–51

    Google Scholar 

  30. Rowley WH, Sato S, Huang SC, Collado-Escobar DM, Beaven MA, Wang LH, Martinez J, Gardner JD, Jensen RT (1990) Cholecystokinin-induced formation of inositol phosphates in pancreatic acini. Am J Physiol 259:G655–G665

    PubMed  CAS  Google Scholar 

  31. Matozaki T, Williams JA (1989) Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. J Biol Chem 264:14729–14734

    PubMed  CAS  Google Scholar 

  32. Von Schrenk T, Jensen RT, Gardner JD (1987) Charateristics of the pancreatic acinar cell receptors with which cholecystokinin interacts to increase cyclic AMP. In: Bali JP, Martinez J (eds) Gastrin and cholecystokinin: chemistry, physiology and pharmacology. Elsevier, Amsterdam, pp 49–56

    Google Scholar 

  33. Leach SD, Marino CR, Miller LJ, Modlin IM, Gorelick FS (1990) Cholecystokinin activates adenylate cyclase via low-affinity CCK receptors. Gastroenterology 96:A224

    Google Scholar 

  34. Saluja AK, Saluja M, Printz H, Zavertnik A, Sengupta A, Steer ML (1989) Experimental pancreatitis is mediated by low-affinity cholecystokinin receptors that inhibit digestive enzyme secretion. Proc Natl Acad Sci USA 86:8968–8971

    Article  PubMed  CAS  Google Scholar 

  35. Powers RE, Grady T, Holt S, Steer ML, Saluja AK (1990) Supramaximal doses of a novel CCK analogue (JMV-180) induces acute pancreatitis in mice. Gastroenterology 98:A231

    Google Scholar 

  36. Nagain C, Rodriguez M, Martinez J, Roze C (1987) In vivo activities of peptide and pseudopeptide analogs of the C-terminal octapeptide of cholecystokinin on pancreatic secretion in the rat. Peptides 8:1023–1028

    Article  PubMed  CAS  Google Scholar 

  37. Nagain C, Rodriguez M, Martinez J, Roze C (1990) Deux peptides dérivés de la CCK8 ne désensibilisent pas la secrétion pancréatique externe et ont une action prolongée in vivo chez le rat. Gastroenterol Clin Biol 14:A35

    Google Scholar 

  38. Nagain C, Rodriguez M, Galas MC, Lignon MF, Martinez J, Roze C (1990) Synthetic CCK8 analogues with antagonist activity on pancreatic receptors: in vivo study in the rat, compared to non-peptidic antagonists. Pancreas 6:275–281

    Article  Google Scholar 

  39. Orosco M, Gourch A, Rodriguez M, Martinez J, Jacquot C, Cohen Y (1990) Comparative activity of two cholecystokinin analogues with partial agonist activity: effects on food intake and brain monoamines. Peptides 11:873–877

    Article  PubMed  CAS  Google Scholar 

  40. Gourch A (1990) Monoamines cérébrales, comportement alimentaire et neuropeptide Y. Effects de la CCK8S et de nouveaux analogues peptidiques. Thesis, Université de Paris Sud, Centre d’Orsay, Orsay

    Google Scholar 

  41. Martinez J, Rodriguez M, Bali JP, Laur J (1986) Phenethyl ester derivatives analogues of the C-terminal tetrapeptide of gastrin as potent gastrin antagonists. J Med Chem 29:2201–2206

    Article  PubMed  CAS  Google Scholar 

  42. Rakovska A, Heinklein P, Milenov K, Nieber K, Oehme P (1987) Suc-Tyr(SE)-Met-Gly-Trp-Met-Asp-Phenethylamide (410): a competitive antagonist of cholecystokinin-induced contractions in smooth muscles in vitro. Methods Find Exp Clin Pharmacol 9:429–435

    PubMed  CAS  Google Scholar 

  43. Nieber K, Milenov K, Rakovska A, Heinklein P, Oehme P (1988) Responses of guinea pig gastric, ileal and gall bladder smooth muscle to desamino-cholecystokinin-octapeptide (CCK-7). Methods Find Exp Clin Pharmacol 10: 513–520

    PubMed  CAS  Google Scholar 

  44. Lignon MF, Galas MC, Rodriguez M, Laur J, Aumelas A, Martinez J (1987) A synthetic peptide that is a cholecystokinin receptor antagonist. J Biol Chem 262:7226–7231

    PubMed  CAS  Google Scholar 

  45. Rolland M, Rodriguez M, Lignon MF, Galas MC, Laur J, Aumelas A, Martinez J (1991) Synthesis and biological activity of some 2-phenylethyl ester analogues of the C-terminal heptapeptide of cholecystokinin modified in the Trp 30 region. Int J Pept Protein Res (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinez, J., Galas, MC., Lignon, MF., Rodriguez, M., Fulcrand, P. (1991). Boc-Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-2-Phenylethyl Ester — JMV180: A Unique CCK Analogue with Different Actions on High- and Low-Affinity CCK Receptors. In: Adler, G., Beglinger, C. (eds) Cholecystokinin Antagonists in Gastroenterology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76362-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76362-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76364-9

  • Online ISBN: 978-3-642-76362-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics