Cholecystokinin Receptor Antagonists In Vitro

  • R. T. Jensen
  • J. D. Gardner

Abstract

Since the original observation in 1979 [48] that dibutyryl cyclic GMP (Bt2cGMP) functions as a weak, but specific, cholecystokinin (CCK) receptor antagonist, five different classes of CCK receptor antagonists have been described in various in vitro studies (Tables 1, 2) [30,31]. Members of at least two of these classes [i.e., amino acid derivatives such as lorglumide (CR 1409) or loxiglumide (CR 1505) and substituted benzodiazepine analogues such as L-364718 (MK-329), L-365260 or A-65186 have sufficient potency and specificity to be generally useful for in vivo studies that explore the importance of CCK-related peptides in various physiological processes. It is likely that additional useful CCK receptor antagonists which may further distinguish CCK receptor subtypes or have higher potency, will be developed, probably from one of the five different classes currently described. In this chapter the results of in vitro studies with each of the different classes of CCK receptor antagonists are reviewed.

Keywords

Tryptophan Aspergillus Amylase Monophosphate Propyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barlas N, Jensen RT, Beinfeld MC, Gardner JD (1982) Cyclic nucleotide antagonists of cholecystokinin: structural requirements for interaction with the cholecystokinin receptor. Am J Physiol 242:G161–G167PubMedGoogle Scholar
  2. 2.
    Bitar KN, Makhlouf GM (1982) Receptors on smooth muscle cells: characterization by contraction and specific antagonists. Am J Physiol 242:G400–G407PubMedGoogle Scholar
  3. 3.
    Bock MG, DiGardo RM, Evans BE, Rittle KE, Whitter WE, Veber DF, Anderson PS, Freidingger RM (1989) Benzodiazepine gastrin and cholecystokinin receptor ligands: L-365260. J Med Chem 32:13–16PubMedCrossRefGoogle Scholar
  4. 4.
    Chang RSL, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci USA 83:4923–4926PubMedCrossRefGoogle Scholar
  5. 5.
    Chang RSL, Lotti VJ, Monaghan RL, Birnbaum J, Stapley EO, Goetz MA, Albers-Schonberg G, Patchett AA, Liesch JM, Hensens OD, Springer JP (1985) A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus Allicaceus. Science 230:177–179PubMedCrossRefGoogle Scholar
  6. 6.
    Chang RSL, Lotti VJ, Keenan ME, Kristie KA (1986) Characterization of (3H) pentagastrin binding in guinea pig gastric glands. Biochem Biophys Res Commun 134:895–899PubMedCrossRefGoogle Scholar
  7. 7.
    Charpentier B, Pelaprat D, Durieux C, Dor A, Reibaud M, Blanchard J-C, Rogues BP (1988) Cyclic cholecystokinin analogues with high selectivity for central receptors. Proc Natl Acad Sci USA 85:1968–1972PubMedCrossRefGoogle Scholar
  8. 8.
    Cherner JA, Sutliff VE, Grybowski DA, Jensen RT, Gardner JD (1988) Functionally distinct receptors for cholecystokinin and gastrin on dispersed chief cells from guinea pig stomach. Am J Physiol 254:G151–G155PubMedGoogle Scholar
  9. 9.
    De Castiglione R (1977) Structure-activity relationships in ceruletide-like peptides. In: Bonfils S, Fromageot P, Rosselin G (eds) 1st International symposium on hormonal receptors in digestive tract physiology. Elsevier/North-Holland, New York, pp 33–42Google Scholar
  10. 10.
    Durieux C, Coppey M, Zajac JM, Roques B (1986) Occurrence of two cholecystokinin binding sites in guinea pig brain cortex. Biochem Biophys Res Commun 137:1167–1173PubMedCrossRefGoogle Scholar
  11. 11.
    Evans BE, Brock MG, Rittle KE, DiPardo RM, Whittier WL, Veber DF, Anderson PS, Freidinger RM (1986) Design of potent, orally effective, non-peptidal antagonists of the peptide hormone cholecystokinin. Proc Natl Acad Sci USA 83:4918–4922PubMedCrossRefGoogle Scholar
  12. 12.
    Fourmy D, Zahid A, Fabre R, Pradayrol L, Ribet A (1987) Receptors for cholecystokinin and gastrin peptides display specific binding properties and are structurally different in guinea pig and dog pancreas. Eur J Biochem 165: 683–692PubMedCrossRefGoogle Scholar
  13. 13.
    Freidinger RM, Whitter WK, Gould NP, Holloway MK, Chang RSL, Lotti VJ (1990) Novel glutamic acid derived cholecystokinin receptor ligands. J Med Chem 33:591–595PubMedCrossRefGoogle Scholar
  14. 14.
    Gardner JD (1983) Mechanism by which dibutyryl cyclic guanosine monophosphate antagonizes the action of cholecystokinin. Gastroenterology 85:1619–1621Google Scholar
  15. 15.
    Gardner JD, Jensen RT (1984) Cholecystokinin receptor antagonists. Am J Physiol 246:G471–G476PubMedGoogle Scholar
  16. 16.
    Gardner JD, Jensen RT (1987) Secretagogue receptors on pancreatic acinar cells. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 2nd edn. Raven, New York, pp 1109–1127Google Scholar
  17. 17.
    Hahne WF, Jensen RT, Lemp GF, Gardner JD (1981) Proglumide and benzotript: members of a different class of cholecystokinin receptor antagonists. Proc Natl Acad Sci USA 78:6304–6308PubMedCrossRefGoogle Scholar
  18. 18.
    Hays SE, Beinfeld MC, Jensen RT, Goodwin FIC, Paul SM (1980) Demonstration of a putative receptor site for cholecystokinin in rat brain. Neuropeptides 1:53–62CrossRefGoogle Scholar
  19. 19.
    Huang SC, Zhang L, Chiang HCV, Wank SA, Maton PN, Gardner JD, Jensen RT (1989) Comparison of the ability of the 3-substituted 1,4 benzodiazapine analogues L-365260 and L-364718 to function as gastrin and pancreatic CCK receptor antagonists. Am J Physiol 257:G169–G174PubMedGoogle Scholar
  20. 20.
    Huang SC, Yu D-H, Wank SA, Mantey S, Gardner JD, Jensen RT (1989) Importance of sulfation of gastrin or cholecystokinin (CCK) on affinity or gastrin and CCK receptors. Peptides 10:785–789PubMedCrossRefGoogle Scholar
  21. 21.
    Hutchinson JB, Dockray GB (1980) The inhibition of action of cholecystokinin octapeptide on the guinea pig myenteric plexus by dibutyryl cyclic guanosine monophosphate. Brain Res 20:501–505CrossRefGoogle Scholar
  22. 22.
    Innes RB, Synder S (1980) Cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci USA 77:6917–6921CrossRefGoogle Scholar
  23. 23.
    Jensen RT, Gardner JD (1981) Identification and characterization of receptors for secretagogues on pancreatic acinar cells. Fed Proc 40:2486–2496PubMedGoogle Scholar
  24. 24.
    Jensen RT, Lemp GF, Gardner JD (1980) Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc Natl Acad Sci USA 77:2079–2083PubMedCrossRefGoogle Scholar
  25. 25.
    Jensen RT, Jones SW, Gardner JD (1983) Structure-function studies of N-acyl derivatives of tryptophan that function as specific cholecystokinin receptor antagonists. Biochim Biophys Acta 761:269–277PubMedCrossRefGoogle Scholar
  26. 26.
    Jensen RT, Jones SW, Gardner JD (1983) COOH-terminal fragments of cholecystokinin receptor antagonists. Biochim Biophys Acta 757:250–258PubMedCrossRefGoogle Scholar
  27. 27.
    Jensen RT, Murphy RB, Trampota M, Schneider LH, Jones SW, Howard JM, Gardner JD (1985) Proglumide analogues: potent cholecystokinin receptor antagonists. Am J Physiol 249:G214–G220PubMedGoogle Scholar
  28. 28.
    Jensen RT, Zhou Z-C, Murphy RB, Jones SW, Setnikar I, Rovati LA, Gardner JD (1986) Structural features of various proglumide-related cholecystokinin receptor antagonists. Am J Physiol 251:G839–G846PubMedGoogle Scholar
  29. 29.
    Jensen RT, Heinz-Erian P, Jones SW, Mantey S, Gardner JD (1988) Mechanism of the ability of various substance P antagonists to inhibit the action of bombesin. Am J Physiol 254:G883–G890PubMedGoogle Scholar
  30. 30.
    Jensen RT, Wank SA, Rowley WH, Sato S, Gardner JD (1989) Interaction of CCK with pancreatic acinar cells. Trends Pharmacol Sci 10:418–423PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen RT. Huang SC, von Schrenck T, Wank SA, Gardner JD (1990) Cholecystokinin receptor antagonists: ability to distinguish various classes of cholecystokin receptors. In: Thompson JC (ed) Gastrointestinal endocrinology: receptors and post-receptor mechanisms. Academic, New York, pp 95–133Google Scholar
  32. 32.
    Jorpes JE, Mutt V (1973) Secretin and cholecystokinin (CCK). In: Jorpes JE, Mutt V (eds) Secretin, cholecystokinin, pancreozymin and gastrin. Springer Berlin Heidelberg, New York, pp 1–179Google Scholar
  33. 33.
    Kerwin JF, Nadzan AM, Kopecka H, Lin CW, Miller T, Witte D, Burt S (1989) Cholecystokinin (CCK) antagonists: new implications in the design and modification of CCK antagonists. J Med Chem 32:730–742Google Scholar
  34. 34.
    Lignon M-F, Galas M-C, Rodriquez M, Laur J, Aumelas A, Martinez J (1987) A synthetic peptide derivative that is a cholecystokinin receptor antagonist. J Biol Chem 262:7226–7231PubMedGoogle Scholar
  35. 35.
    Lin CW, Holladay, Witte DG, Miller TR, Wolfram CAW, Bianchi BR, Bennett MJ, Nadzan AM (1990) A71378: a CCK agonist with high potency and selectivity for CCK-A receptors. Am J Physiol 258:G648–G651PubMedGoogle Scholar
  36. 36.
    Lotti VJ, Chang RSL (1989) A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L-365260. Eur J Pharmacol 162:273–280PubMedCrossRefGoogle Scholar
  37. 37.
    Louie DS, Liang J-P, Owyang C (1988) Characterization of a new antagonist, L-364718 in vitro and in vivo studies. Am J Physiol 255:G261–G266PubMedGoogle Scholar
  38. 38.
    Magous R, Bali J-P (1981) High affinity sites for gastrin on isolated rabbit gastric mucosal cells. Eur J Pharmacol 82:47–54CrossRefGoogle Scholar
  39. 39.
    Makovec F, Christe R, Bani M, Pacini MA, Setnikar I, Rovati LA (1985) New glutaramic acid derivatives with potent competitive and specific cholecystokinin-antagonistic activity. Arzneimittelforschung 35:1048–1051PubMedGoogle Scholar
  40. 40.
    Makovec F, Bani M, Christe R, Revel L, Rovati LC, Rovati LA (1986) Differentiation of central and peripheral cholecystokinin receptors by new glutaramic acid derivatives with cholecystokinin-antagonistic activity. Arzneimittelforschung 36:98–101PubMedGoogle Scholar
  41. 41.
    Makovec F, Christe R, Bani M, Revel L, Setnikar I, Rovati AL (1986) New glutaramic and aspartic derivatives with potent CCK-antagonistic activity. Eur J Med Chem 21:9–20Google Scholar
  42. 42.
    Martinez J, Rodriquez M, Bali J-P, Laur J (1988) Phenylethyl ester derivatives analogues of the C-terminal tetrapeptide of gastrin as potent gastrin antagonists. J Med Chem 29:2201–2206CrossRefGoogle Scholar
  43. 43.
    Maton PN, Sutliff VE, Jensen RT, Gardner JD (1985) Carbobenzoxy amino acids: structural requirements for cholecystokinin receptor antagonist activity. Am J Physiol 248:G479–G484PubMedGoogle Scholar
  44. 44.
    Menozzi D, Gardner JD, Jensen RT, Maton PN (1989) Properties of receptors for gastrin and CCK on gastrin smooth muscle cells. Am J Physiol 257:G73–G79PubMedGoogle Scholar
  45. 45.
    Miller LJ, Reilly WM, Rozenweig SA, Jamieson JD, Go VLW (1983) A soluble interaction between dibutyryl cyclic guanosine 3′:5′-monophosphate and cholecystokinin: a possible mechanism for the inhibition of cholecystokinin activity. Gastroenterology 84:1505–1511PubMedGoogle Scholar
  46. 46.
    Moran T, Robinson P, Goldrich M, McHugh PR (1986) Two brain cholecystokinin receptors: implication for behavioral actions. Brain Res 362:175–179PubMedCrossRefGoogle Scholar
  47. 47.
    Niederau C, Niederau M, Williams JA, Grendell JH (1986) New proglumide-analogue CCK receptor antagonists: very potent and selective for peripheral tissues. Am J Physiol 251:G856–G860Google Scholar
  48. 48.
    Peikin SR, Costenbader CL, Gardner JD (1979) Actions of derivatives of cyclic nucleotides on dispersed acini from guinea pig pancreas: discovery of competitive antagonists of the action of cholecystokinin. J Biol Chem 254:5321–5327PubMedGoogle Scholar
  49. 49.
    Praissman M, Walen M (1984) The binding characteristics of 125I-gastrin and 125I-CCK-8 to guinea pig gastric glands differ. Biochem Biophys Res Commun 123:641–647PubMedCrossRefGoogle Scholar
  50. 50.
    Rattan S, Goyal RK (1986) Structure-activity relationship of subtypes of cholecystokinin receptors in the cat lower esophageal sphincter. Gastroenterology 90:94–102PubMedGoogle Scholar
  51. 51.
    Reisine T, Jensen RT (1986) Cholecystokinin-8 stimulates adrenocorticotropin release from anterior pituitary cells. J Pharmacol Exp Ther 236:621–626PubMedGoogle Scholar
  52. 52.
    Robberecht P, Deschodt-Lanckman M, Woussen-Colle M-C, DeNeef P, Camus JC, Christophe J (1980) Butyryl derivatives of cyclic GMP interfere with the biological and immunological properties of the pancreozymin-gastrin family of peptides. Mol Pharmacol 17:268–274PubMedGoogle Scholar
  53. 53.
    Rovati LC, Makovec F (1988) New pentanoic acid derivatives with potent CCK antagonistic properties: different activity on the periphery vs central nervous system. Neurol Neurobiol 47:1–11Google Scholar
  54. 54.
    Rubin B, Engel SL (1972) Some biological characteristics of cholecystokinin (CCK-PZ) and synthetic analogs. Nobel Symp 16:41–56Google Scholar
  55. 55.
    Saito A, Sankaran H, Goldfine ID, Williams JA (1980) Cholecystokinin receptors in brain: characterization and distribution. Science 208:1155–1156PubMedCrossRefGoogle Scholar
  56. 56.
    Sankaran H, Goldfine ID, Deveney CW, Wong K-Y, Williams JA (1980) Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J Biol Chem 255:1849–1853PubMedGoogle Scholar
  57. 57.
    Scemama JL, de Vries L, Pradayrol K, Seva C, Trochere H, Vaysse N (1989) Cholecystokininin and gastrin peptides stimulate ODC activity in a rat pancreatic cell line. Am J Physiol 256:G846–G850PubMedGoogle Scholar
  58. 58.
    Schjoldager B, Shaw MJ, Powers SP, Schmalz P, Szurszewski J, Miller LJ (1988) Bovine gallbladder muscularis: source of a myogenic receptor for cholecytokinin. Am J Physiol 254:G294–G299PubMedGoogle Scholar
  59. 59.
    Shaw MJ, Hadac EM, Miller LJ (1987) Preparation of enriched plasma membranes from bovine gallbladder muscularis for characterization of cholecystokinin receptors. J Biol Chem 14:313–318Google Scholar
  60. 60.
    Smith GJ, Moran TH, Coyle JT, O’Donahue TL, McHugh RP (1984) Anatomic localization of cholecystokinin receptors to the pyloric sphincter. Am J Physiol 246:R127–R130PubMedGoogle Scholar
  61. 61.
    Soll AH, Amiran DA, Thomas LP, Reedy TJ, Elashoff JD (1984) Gastrin receptors on isolated canine parietal cells. J Clin Invest 73:1434–1447PubMedCrossRefGoogle Scholar
  62. 62.
    Spanarkel M, Martinez J, Briet C, Jensen RT, Gardner JD (1983) Cholecystokinin-27–32-amide. A member of a new class of cholecystokinin receptor antagonists. J Biol Chem 258:6746–6749PubMedGoogle Scholar
  63. 63.
    Steigerwalt RW, Goldfine ID, Williams JA (1984) Characterization of cholecystokinin receptors on bovine gallbladder membranes. Am J Physiol 247:G709–G714PubMedGoogle Scholar
  64. 64.
    Sutliff A, Cherner JA, Jensen RT, Gardner JD (1990) Binding of 125I-CCK-8 and 125I-gastrin-I to dispersed chief cells from guinea pig stomach. Biochem Biophys Acta 1052:9–16PubMedCrossRefGoogle Scholar
  65. 65.
    Verspohl EJ, Ammon HPT, Williams JA, Goldine ID (1986) Evidence that cholecystokinin interacts with specific receptors and regulates insulin release in rat islet of langerhans. Diabetes 35:38–43PubMedCrossRefGoogle Scholar
  66. 66.
    Vigna SR, Szecowska J, Willians JA (1985) Do antagonists of pancreatic cholecystokinin receptors interact with central nervous system cholecystokinin receptors? Brain Res 343:394–397PubMedCrossRefGoogle Scholar
  67. 67.
    Von Schrenck T, Moran TH, Heinz-Erian P, Gardner JD, Jensen RT (1988) Cholecystokinin receptors on gallbladder muscle and on pancreatic acinar cells. Am J Physiol 255:G512–G521Google Scholar
  68. 68.
    Yanaihara C, Sugiura N, Kashimoto K, Kondo M, Kawamura M, Naruse S, Yausi A, Yanaihara N (1985) Dissociation of pancreoszymin (PZ) activity from cholecystokinin (CCK) activity by Na-carboxyacyl CCK-7 and CCK-8 analogues with a substituted glycine. Biomed Res 6:111–115Google Scholar
  69. 69.
    Yoder DG, Moody TW (1987) High affinity binding of cholecystokinin to small cell lung cancer cells. Peptides 8:103–107PubMedCrossRefGoogle Scholar
  70. 70.
    Yu D-H, Noguchi M, Zhou Z-C, Villanueva ML, Gardner JD, Jensen RT (1987) Characterization of gastrin receptors on guinea pig pancreatic acini. Am J Physiol 253:G793–G801PubMedGoogle Scholar
  71. 71.
    Yu D-H, Huang SC, Wank SA, Mantey S, Gardner JD, Jensen RT (1990) Pancreatic receptors for cholecystokinin: evidence for interaction with 3 receptor classes. Am J Physiol 258:G86–G95PubMedGoogle Scholar
  72. 72.
    Zhang L, Mantey S, Jensen RT, Gardner JD (1988) An analogue of substance P with broad receptor antagonist activity. Biochem Biophys Acta 972:37–44PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. T. Jensen
  • J. D. Gardner
    • 1
  1. 1.Digestive Diseases Branch, National Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations