The Skyrme—Hartree—Fock Model of the Nuclear Ground State

  • P.-G. Reinhard


Two decades ago, with the introduction of Skyrme forces [2.1], Hartree—Fock calculations became feasible in nuclear physics. Since then, they have been applied to a great variety of phenomena, including deformation properties, superheavy nuclei, vibrations, and heavy-ion collisions [2.2]. Nonetheless, their most straightforward application, the description of the ground state of spherical nuclei, remains a useful tool. It serves as the basis for many further applications in nuclear-structure physics; e.g., for studying refinements and variants of the force [2.3], for understanding electron-scattering data, for describing hyperons in nuclei, or for RPA vibrations of the ground-state. Thus, it is desirable to have a code optimized for speed. Such a code also provides a good example of the fast numerical techniques that are necessary for large scale applications.


Form Factor Gradient Step Superheavy Nucleus Radial Wave Function Skyrme Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    T.H.R. Skyrme, Nucl. Phys. 9 (1959) 615CrossRefMATHGoogle Scholar
  2. D. Vautherin and D. M. Brink, Phys. Rev. C5 (1972) 626ADSGoogle Scholar
  3. [2.2]
    P. Quentin and H. Flocard, Ann. Rev. Nucl. Part. Sci. 28 (1978) 523ADSCrossRefGoogle Scholar
  4. K. Goeke and P.-G. Reinhard, Lecture Notes in Physics, vol 171 (1982)Google Scholar
  5. [2.3]
    J. Friedrich and P.-G. Reinhard, Phys. Rev. C33 (1986) 335ADSGoogle Scholar
  6. [2.4]
    H. Pfeiffer, P.-G. Reinhard, and D. Drechsel, Z. Phys. A292 (1979) 375ADSCrossRefMathSciNetGoogle Scholar
  7. [2.5]
    P.-G. Reinhard and R. Y. Cusson, Nucl. Phys. A378 (1982) 418ADSCrossRefGoogle Scholar
  8. [2.6]
    M. R. Strayer, R. Y.Cusson, A. S. Umar, P.-G. R.inhard, D. A. Bromley, and W. Greiner, Phys. Lett. B135 (1984) 261CrossRefGoogle Scholar
  9. R. Y. Cusson, P.-G. Reinhard, M. R. Strayer, J. A. Maruhn, and W. Greiner, Z. Phys. A320 (1985) 475ADSCrossRefGoogle Scholar
  10. [2.7]
    P.-G. Reinhard, F. Grümmer, and K. Goeke, Z. Phys. A317 (1984) 339ADSGoogle Scholar
  11. [2.8]
    P.-G. Reinhard and J. Friedrich, Z. Phys. 321 (1985) 619ADSCrossRefGoogle Scholar
  12. [2.9]
    A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton 1957 )MATHGoogle Scholar
  13. [2.10]
    J. Blocki and M. Flocard, Nucl. Phys. A273 (1976) 45CrossRefGoogle Scholar
  14. [2.11]
    P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer, Berlin, Heidelberg 1980CrossRefGoogle Scholar
  15. [2.12]
    J. M. Eisenberg and W. Greiner, Nuclear Models ( North-Holland, Amsterdam 1971 )Google Scholar
  16. [2.13]
    S.-J. Lee et al., Phys. Rev. Lett. 57 (1986) 2916ADSCrossRefGoogle Scholar
  17. [2.14]
    R. Zurmühl, Praktische Mathematik (Springer, Berlin, Heidelberg 1963 ) Chap. VII, Sect. 3MATHGoogle Scholar
  18. [2.15]
    B. Dreher, J. Friedrich, K. Merle, G. Lührs and H. Rothaas, Nucl. Phys. A235 (1974) 219CrossRefGoogle Scholar
  19. [2.16]
    J. L. Friar, J. W. Negele, Adv. Nucl. Phys. 8 (1975) 219CrossRefGoogle Scholar
  20. [2.17]
    V. H. Walther, private communication; G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther, Nucl. Phys. A333 (1980) 318Google Scholar
  21. [2.18]
    J. Friedrich and N. Voegeler, Nucl. Phys. A373 (1982) 191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P.-G. Reinhard

There are no affiliations available

Personalised recommendations