The Skyrme—Hartree—Fock Model of the Nuclear Ground State

  • P.-G. Reinhard


Two decades ago, with the introduction of Skyrme forces [2.1], Hartree—Fock calculations became feasible in nuclear physics. Since then, they have been applied to a great variety of phenomena, including deformation properties, superheavy nuclei, vibrations, and heavy-ion collisions [2.2]. Nonetheless, their most straightforward application, the description of the ground state of spherical nuclei, remains a useful tool. It serves as the basis for many further applications in nuclear-structure physics; e.g., for studying refinements and variants of the force [2.3], for understanding electron-scattering data, for describing hyperons in nuclei, or for RPA vibrations of the ground-state. Thus, it is desirable to have a code optimized for speed. Such a code also provides a good example of the fast numerical techniques that are necessary for large scale applications.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    T.H.R. Skyrme, Nucl. Phys. 9 (1959) 615CrossRefMATHGoogle Scholar
  2. D. Vautherin and D. M. Brink, Phys. Rev. C5 (1972) 626ADSGoogle Scholar
  3. [2.2]
    P. Quentin and H. Flocard, Ann. Rev. Nucl. Part. Sci. 28 (1978) 523ADSCrossRefGoogle Scholar
  4. K. Goeke and P.-G. Reinhard, Lecture Notes in Physics, vol 171 (1982)Google Scholar
  5. [2.3]
    J. Friedrich and P.-G. Reinhard, Phys. Rev. C33 (1986) 335ADSGoogle Scholar
  6. [2.4]
    H. Pfeiffer, P.-G. Reinhard, and D. Drechsel, Z. Phys. A292 (1979) 375ADSCrossRefMathSciNetGoogle Scholar
  7. [2.5]
    P.-G. Reinhard and R. Y. Cusson, Nucl. Phys. A378 (1982) 418ADSCrossRefGoogle Scholar
  8. [2.6]
    M. R. Strayer, R. Y.Cusson, A. S. Umar, P.-G. R.inhard, D. A. Bromley, and W. Greiner, Phys. Lett. B135 (1984) 261CrossRefGoogle Scholar
  9. R. Y. Cusson, P.-G. Reinhard, M. R. Strayer, J. A. Maruhn, and W. Greiner, Z. Phys. A320 (1985) 475ADSCrossRefGoogle Scholar
  10. [2.7]
    P.-G. Reinhard, F. Grümmer, and K. Goeke, Z. Phys. A317 (1984) 339ADSGoogle Scholar
  11. [2.8]
    P.-G. Reinhard and J. Friedrich, Z. Phys. 321 (1985) 619ADSCrossRefGoogle Scholar
  12. [2.9]
    A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton 1957 )MATHGoogle Scholar
  13. [2.10]
    J. Blocki and M. Flocard, Nucl. Phys. A273 (1976) 45CrossRefGoogle Scholar
  14. [2.11]
    P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer, Berlin, Heidelberg 1980CrossRefGoogle Scholar
  15. [2.12]
    J. M. Eisenberg and W. Greiner, Nuclear Models ( North-Holland, Amsterdam 1971 )Google Scholar
  16. [2.13]
    S.-J. Lee et al., Phys. Rev. Lett. 57 (1986) 2916ADSCrossRefGoogle Scholar
  17. [2.14]
    R. Zurmühl, Praktische Mathematik (Springer, Berlin, Heidelberg 1963 ) Chap. VII, Sect. 3MATHGoogle Scholar
  18. [2.15]
    B. Dreher, J. Friedrich, K. Merle, G. Lührs and H. Rothaas, Nucl. Phys. A235 (1974) 219CrossRefGoogle Scholar
  19. [2.16]
    J. L. Friar, J. W. Negele, Adv. Nucl. Phys. 8 (1975) 219CrossRefGoogle Scholar
  20. [2.17]
    V. H. Walther, private communication; G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther, Nucl. Phys. A333 (1980) 318Google Scholar
  21. [2.18]
    J. Friedrich and N. Voegeler, Nucl. Phys. A373 (1982) 191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P.-G. Reinhard

There are no affiliations available

Personalised recommendations