Anomalies in Quantum Field Theory

  • Allen C. Hirshfeld


A review is presented of the anomaly problem in quantum field theory. The problems encountered in evaluating the π0 → 2γ decay are described, as well as the point-splitting method for dealing with these problems and deriving the chiral anomaly. We next show how the Wess-Zumino consistency conditions allow the understanding of these results in the context of the cohomology of Lie algebras. Then some concepts from the theory of characteristic classes are discussed, including the Chern character, in order to derive the descent equations which are the basis for the algebraic calculation of anomalies. Finally, the relation of the anomaly problem to the question of Schwinger terms in current algebra is clarified.


Gauge Transformation Current Algebra Axial Current Exterior Derivative Differential Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Binz, J. Sniatycki, H. Fischer: Geometry of Classical Fields, North Holland Mathematics Studies 154 ( North Holland, Amsterdam 1988 )Google Scholar
  2. 2.
    M.F. Atiyah, R.S. Ward: Comm. Math. Phys. 55, 117 (1977)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    M. Gell-Mann: Acta Phys. Austriaca Suppl. IV, 733 (1972)Google Scholar
  4. 4.
    T.T. Wu, C.N. Yang: Phys. Rev. D12, 3845 (1975)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P.A.M. Dirac: Proc. Roy. Soc. A133, 60 (1931)ADSCrossRefGoogle Scholar
  6. 6.
    L. Alvarez-Gaumé, E. Witten: Nucl. Phys. B234, 269 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    M. Geli-Mann, M. Levy: Nuov. Cim. 16, 705 (1960)CrossRefGoogle Scholar
  8. 8.
    S.B. Treiman: in Lectures on Current Algebra and its Applications, S.B. Treiman, R. Jackiw, D.J. Gross (Princeton University Press 1972 )Google Scholar
  9. 9.
    D.G. Sutherland: Nucl. Phys. B2, 433 (1967); M. Veltman: Proc. Roy. Soc. A301, 107 (1967)ADSCrossRefGoogle Scholar
  10. 10.
    H. Lehmann, K. Symanzik, W. Zimmerman: Nouv. Cim. 1, 205 (1951)CrossRefGoogle Scholar
  11. 11.
    J. Schwinger: Phys. Rev. 82, 664 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    R. Jackiw: in Lectures on Current Algebra and its Applications, S.B. Treimann, R. Jackiw, D.J. Gross (Princeton University press 1972 )Google Scholar
  13. 13.
    K. Fujikawa: Phys. Rev. Lett. 42, 1195 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    H. Leutwyler: Helvetica Physica Acta 59, 201 (1986); reprinted in The Fundamental Interaction, eds. J. Debrus, A.C. Hirshfeld ( Plenum New York, London 1988 )MathSciNetGoogle Scholar
  15. 15.
    S. Adler: Phys. Rev. 177, 2426 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Bell, R. Jackiw: Nuov. Cim. 60, 47 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    H. Georgi: Weak Interactions and Modem Particle Theory (Benjamin, Reading Massachusetts 1984 )Google Scholar
  18. 18.
    C. Bouchiat, J. Iliopoulos, P. Meyer: Phys. Lett. B38, 519 (1972)ADSGoogle Scholar
  19. 19.
    R. Jackiw, R. Rajaraman: Phys. Rev. Lett. 54 1219 (1985)ADSMATHCrossRefGoogle Scholar
  20. 20.
    N.K. Falck: in The Fundamental Interaction, eds. J. Debrus, A.C. Hirshfeld ( Plenum, New York, London 1988 )Google Scholar
  21. 21.
    G. ’t Hooft: Phys. Rev. D14, 3432 (1976)CrossRefGoogle Scholar
  22. 22.
    G. ’t Hooft: in Recent Developments in Gauge Theories, eds. G. ’t Hooft et. al. ( Plenum, New York, London 1980 )Google Scholar
  23. 23.
    M. Reuter: in The Fundamental Interaction, eds. J. Debrus, A.C. Hirshfeld ( Plenum, New York, London 1988 )Google Scholar
  24. 24.
    J. Wess, B. Zumino: Phys. Lett. B37, 95 (1971)MathSciNetCrossRefGoogle Scholar
  25. 25.
    L. Bonora, P. Cotta-Ramusino: Comm. Math. Phys. 87, 589 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    J. Wess: Lectures at the 5th Adriatic Meeting on Particle Physics, Dubrovnik, Yugoslavia (1986)Google Scholar
  27. 27.
    C. Becchi, A. Rouet, R. Stora: Ann. Phys. 98, 287 (1976)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    L.D. Faddeev, V.N. Popov: Phys. Lett. B25, 29 (1967)CrossRefGoogle Scholar
  29. 29.
    W. Greub, S. Halperin, R. Vanstone: Connections, Curvature and Cohomology, ( Academic Press, New York 1973 )MATHGoogle Scholar
  30. 30.
    R. Stora: in New Developments in Quantum Field Theory and Statistical Mechanics eds. H. Levy, P. Mitter (Plenum, New York, London 1977 )Google Scholar
  31. 31.
    A.C. Hirshfeld, H. Leschke: Phys. Lett. 101B, 48 (1981)ADSGoogle Scholar
  32. 32.
    W.A. Bardeen: Phys. Rev. 184 1848 (1969)ADSCrossRefGoogle Scholar
  33. 33.
    B. Zumino, Y.-S. Wu, A. Zee: Nucl. Phys. B239 477 (1984); B. Zumino: in Relativity, Groups and Topology II, ed. R. Stora ( North Holland, Amsterdam 1984 )MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    L.D. Faddeev: Phys. Lett. B145, 81 (1984)MathSciNetGoogle Scholar
  35. 35.
    M. Abud, J.-P. Ader, F. Gieres: CERN preprint TH. 5576 (1989)Google Scholar
  36. 36.
    J. Schwinger: Phys. Rev. Lett. 3, 296 (1959)ADSCrossRefGoogle Scholar
  37. 37.
    J. Mickelsson: Current Algebras (Plenum, New York, London 1990 )Google Scholar
  38. 38.
    T. Nishikawa, I. Tsutsui: Nucl. Phys. B308, 544 (1988)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    M. Dubois-Viollette: in Fields and Geometry, ed. A. Jadczyk ( World Scientific, Singapore 1986 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Allen C. Hirshfeld
    • 1
  1. 1.Institut für Physik der UniversitätDortmund 50Federal Republic of Germany

Personalised recommendations