Der Plattenfixateur interne für lange Röhrenknochen

  • D. Wolter
Conference paper

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CCA Biochem BV (1988) Polyactide. Information Bulletin, Gorinchem, HollandGoogle Scholar
  2. 2.
    Boehringer Ingelheim KG (1985) Resorbable Polyesters. Information Bulletin - Product Range, Ingelheim, FRGGoogle Scholar
  3. 3.
    Du Pont Company (1988) Medisorb, bioresorbable polymers, Bulletin 8/88, 138489A, Wilmington, Del., USAGoogle Scholar
  4. 4.
    Holmes PA (1985) Applications of PHB — a microbially produced biodegradable thermoplastic. Phys Tfechnol 16:32CrossRefGoogle Scholar
  5. 5.
    Brown DJ, Ragg PL, Webb A (1987) The potential medical applications of hydroxybutyrate-hydroxy-valerate copolymers. Proceedings, Medical Plastics ’87, Copenhagen, Denmark, 28.1Google Scholar
  6. 6.
    Katz AR, Himer RJ (1970) Evaluation of tensile and absorption properties of polyglycolic acid sutures. Surg Gynecol Obstet 131:701PubMedGoogle Scholar
  7. 7.
    Postlethwait RW, Durham NC (1970) Polyglycolic acid surgical sutures. Arch Surg 101:489PubMedCrossRefGoogle Scholar
  8. 8.
    Postlethwait RW (1974) Further study of polyglycolic acid suture. Am J Surg 127:617PubMedCrossRefGoogle Scholar
  9. 9.
    Pavan A, Bosio M, Longo T (1979) A comparative study of poly(glycolic acid) and catgut suture materials: Histomorphology and mechanical properties. J Biomed Mater Res 13:477PubMedCrossRefGoogle Scholar
  10. 10.
    Hermann JB, Kelly RJ, Higgins GA (1970) Polyglycolic acid sutures. Arch Surg 100:486CrossRefGoogle Scholar
  11. 11.
    Craig PH, Williams JA, Davis KW, Magoun AD, Levy AJ, Bogdansky IS, Jones JP (1975) A biologic comparison of Polyglactin 910 and polyglycolic acid synthetic absorbable sutures. Surg Gynecol Obstet 141:1PubMedGoogle Scholar
  12. 12.
    Conn J, Oyasu P, Welsh M, Beal JM (1974) Vicryl (Polyglactin 910) synthetic absorbable sutures. Am J Surg 128:19PubMedCrossRefGoogle Scholar
  13. 13.
    Matlaga BF, Salthouse TN (1983) Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910. J Biomed Mater Res 17:185PubMedCrossRefGoogle Scholar
  14. 14.
    Salthouse TN (1984) Some aspects of macrophage behavior at the implant interface. J Biomed Mater Res 18:395PubMedCrossRefGoogle Scholar
  15. 15.
    Salthouse TN (1986) Cellular enzyme activity at the polymer-tissue interface: A review. J Biomed Mater Res 10:197CrossRefGoogle Scholar
  16. 16.
    Salthouse TN, Matlaga BF (1976) Polyglactin 910 suture absorption and the role of cellular enzymes. Surg Gynecol Obstet 142:544PubMedGoogle Scholar
  17. 17.
    Katz AR, Mukherjee DP, Kaganov AL, Gordon S (1985) A new synthetic monofilament absorbable suture made from polytrimethylene carbonate. Surg Gynecol Obstet 161:213PubMedGoogle Scholar
  18. 18.
    Ray JA, Doddi N, Regula D, Williams JA, Melveger A (1981) Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet 13:644Google Scholar
  19. 19.
    Blaydes JE, Werblin TP (1982) 9–0 monofilament polydioxanone (PDS): A new synthetic absorbable suture for cataract wound closure. Ophtal Surg 13: 644Google Scholar
  20. 20.
    Delamy HM, Rudavsky AZ, Lans Z (1985) Preliminary clinical experience with the use of absorbable mesh splenorrhapy. J Ttauma 25:909Google Scholar
  21. 21.
    Dayton MT, Buchele BA, Shirazi SS, Hunt LB (1986) Use of absorbable mesh to repair contaminated abdominal-wall defects. Arch Surg 121:954PubMedCrossRefGoogle Scholar
  22. 22.
    Maurer PK, McDonald JV (1985) Vicryl(Polyglactin 910) mesh as a dural substitute. J Neurosurg 63:448PubMedCrossRefGoogle Scholar
  23. 23.
    Eigler FW, Gross E, Klaes W (1985) Resorbierbare Kunststoffnetze in der Abdominalchirurgie. Chirurg 56:376PubMedGoogle Scholar
  24. 24.
    Lyrell J, Silberman H, Chandrasoma P, Niland J, Shull J (1989) Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet 168:227Google Scholar
  25. 25.
    Kronenthal RL (1975) Biodegradable polymers in medicine and surgery. In: Kronenthal R, Oser Z, Martin E (eds) Polymers in Medicine and Surgery. Plenum, New York, p 119Google Scholar
  26. 26.
    Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery — Poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22:494CrossRefGoogle Scholar
  27. 27.
    Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Controlled Rel 4:155CrossRefGoogle Scholar
  28. 28.
    Ginde RM, Gupta RK (1987) In vitro chemical degradation of poly(glycolic acid) pellets and fibers. J Appl Polym Sci 33:2411CrossRefGoogle Scholar
  29. 29.
    Pitt CG, Gu Z (1987) Modification of the rates of chain cleavage of poly(E-caprolactone) and related polyesters in the solid state. J Controlled Rel 4:283CrossRefGoogle Scholar
  30. 30.
    Kenley RA, Lee MO, Mahoney TR, Sanders LM (1987) Poly(lactide-co-glycolide) decompositions kinetics in vivo and in vitro. Macromolecules 20:2398CrossRefGoogle Scholar
  31. 31.
    Chu CC (1981) An in vivo study of the effect of buffer on the degradation of poly(glycolic acid) sutures. J Biomed Mater Res 15:19PubMedCrossRefGoogle Scholar
  32. 32.
    Chu CC (1985) Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery. Polymer 26:591CrossRefGoogle Scholar
  33. 33.
    Chu CC, Campbell ND (1982) Scanning electron microscopic study of the hydrolytic degradation of poly(glycolic acid) suture. J Biomed Mater Res 16:417PubMedCrossRefGoogle Scholar
  34. 34.
    Chu CC (1982) The effect of pH on the vitro degradation of poly(glycolide lactide) copolymer absorbable sutures. J Biomed Mater Res 16:117PubMedCrossRefGoogle Scholar
  35. 35.
    Williams DF, Mort E (1977) Enzyme accelerated hydrolysis of polyglycolic acid. J Bioeng 1:231PubMedGoogle Scholar
  36. 36.
    Williams DF (1979) Some observations on the role of cellular enzymes in the in vitro degradation of polymers. In: Syrett BC, Acharya A (eds) Corrosion and Degradation of Implant Materials, ASTM STP 684, ASTM, 61Google Scholar
  37. 37.
    Miller ND, Williams DF (1984) The in vivo and in vitro degradation of poly(glycolic acid) suture materials as function of applied strain. Biomaterials 5:365PubMedCrossRefGoogle Scholar
  38. 38.
    Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Engl Med 10:5CrossRefGoogle Scholar
  39. 39.
    Miller ND, Williams DF (1987) On the biodégradation of poly-B-hydroxybutyrate (PHB) homopolymer and poly-B-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials 8:129PubMedCrossRefGoogle Scholar
  40. 40.
    Williams DF, Miller ND (1987) The degradation of polyhydroxybutyrate (PHB). In: Pizzoferato A, Marchetti PG, Ravaglioli, Lee AJC (eds) Biomaterials and Clinical Applications. Elsevier, Amsterdam, p 471Google Scholar
  41. 41.
    Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Polymers for biodegradable medical devices II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials 8:289PubMedCrossRefGoogle Scholar
  42. 42.
    Knowles JC, Hastings GW (1989) Physical characteristics of polyhydroxybutyrate degradation, Proceedings PIMS VI, Norwijkerhout, Holland, 38/1Google Scholar
  43. 43.
    Gilding DK (1981) Biodegradable polymers. Biocompat Clin Implant Mater 2:209Google Scholar
  44. 44.
    Pittman CU Jr, Iqbal M, Chen CY, Heibert JN (1978) Radiation degradation of poly(a-hydroxybutyric acid) and poly(glycolic acid). J Poly Sci Polym Chem Ed 16:2721CrossRefGoogle Scholar
  45. 45.
    Gupta MC, Deshmukh VG (1983) Radiation effects on poly(lactic acid). Biomaterials 24:827Google Scholar
  46. 46.
    Fredericks RJ, Melveger AJ, Dolegiewitz LJ (1984) Morphological and structural changes in a copolymer of glycolide and lactide occuring as a result of hydrolysis. J Appl Polym Sci Polym Phys Ed 22:57CrossRefGoogle Scholar
  47. 47.
    Kulkarni RK, Pani KC, Neuman BS, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839PubMedCrossRefGoogle Scholar
  48. 48.
    Cutright DE, Hunsuck EE (1971) Tissue reaction to the biodegradable polylactic acid suture. Oral Surg 31:134PubMedCrossRefGoogle Scholar
  49. 49.
    Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29:393PubMedGoogle Scholar
  50. 50.
    Outright DE, Hunsuck EE (1972) The repair of fractures of the orbital floor using biodegradable polylactic acid. Oral Surg 33:28CrossRefGoogle Scholar
  51. 51.
    Cutright DE, Perez B, Beasley JD, Larson WJ, Posey WR (1974) Degradation rates of polymers and copolymers of polylactic and polyglycolic acids. Oral Surg 37:142PubMedCrossRefGoogle Scholar
  52. 52.
    Brady JM, Cutright DE, Miller RA, Battistone GC (1973) Resorption rate, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat. J Biomed Mater Res 7:155PubMedCrossRefGoogle Scholar
  53. 53.
    Getter L, Cutright DE, Bhaskar SN, Augsburg JK (1972)A biodegradable intraosseous applicance in the treatment of mandibular fractures. J Oral Surg 30:344PubMedGoogle Scholar
  54. 54.
    Ruderman RJ, Bernstein E, Kairinen E, Hegyeli AF (1973) Scanning electron microscopic study of surface changes on biodegradable sutures. J Biomed Mater Res 7:215CrossRefGoogle Scholar
  55. 55.
    Jamshidi K, Hyon SH, Nakamura T, Ikada Y, Shimizu Y, Teramatsu T (1986) In vitro and in vivo degradation of poly(L-lactide) fibres. In: Christel P, Meunier A, Lee AJC (eds) Biological and Biomechanical Performance of Biomaterials. Elsevier, Amsterdam, p 227Google Scholar
  56. 56.
    Bos RRM, Rozema FR, Boering G, Leenslag JW, Pennings A J, Verwey AB (1988) In vivo and in vitro degradation of poly(L-lactide) used for fracture fixation. In: de Putter C, de Lange GL, de Groot K, Lee AJC (eds) Implant Materials in Biofunction. Elsevier, Amsterdam, p 245Google Scholar
  57. 57.
    Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(L-lac-tide). VI. Plates and screws for internal fracture fixation. Biomaterials 8:70PubMedCrossRefGoogle Scholar
  58. 58.
    Vert M, Christel P, Chabot F, Leray J (1984) Bioresorbable plastic materials for bone surgery. In: Hastings GW, Ducheyne P (eds) Macromolecular BiomaterialsCRC Press, Boca Raton, FL, p 119Google Scholar
  59. 59.
    Vert M, Chabot F (1981) Stereoregular bioresorbable polyesters for orthopedic surgery. Makromol Chem [Suppl 5]Google Scholar
  60. 60.
    Chawla AS, Chang TMS (1985–86) In vivo degradation of poly(lactic acid) of different molecular weights. Biomat Med Dev Art Org 13(3&4):153Google Scholar
  61. 61.
    Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(E-caprolactone), and their copolymers in vivo. Biomaterials 2:215PubMedCrossRefGoogle Scholar
  62. 62.
    Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG (1985) The intracellular degradation of poly(E-caprolactone). J Biomed Mater Res 19:437PubMedCrossRefGoogle Scholar
  63. 63.
    Pitt CG, Hendren RW, Schindler A, Woodward SC (1984) The enzymatic surface errosion of aliphatic polyesters. J Control Rel 1:3CrossRefGoogle Scholar
  64. 64.
    Gilbert RD, Stannett V, Pitt CG, Schindler A (1982) The design of biodegradable polymers: Two approaches. In: Grassie N (ed) Development in Polymer Degradation, vol 4. Applied Science, London, p 259Google Scholar
  65. 65.
    Mason NS, Miles CS, Sparks RE (1985) Hydrolytic degradation of poly(DL-lactide). Polym Mater Sci Eng 53:436Google Scholar
  66. 66.
    Schindler A, Harper D (1979) Polylactide. II. Viscosity-molecular weight relationships and unperturbed chain dimensions. J Polym Sci Chem Ed 17:2593CrossRefGoogle Scholar
  67. 67.
    Vert M, Chabot F, Leray J, Christel P (1978) French Pat Appl 78/29978Google Scholar
  68. 68.
    Garreau H, Vert M (1986) Dynamic mechanical properties of a bioresorbable composite material aimed at internal fixation of bone fractures. Proc 5th PIMS Conference, Nordwijkerhout, Holland, 17/1Google Scholar
  69. 69.
    Törmälä P, Rokkanen P, Laiho J, Tamminmäki M (1985) Finish Pat Appl 85/1828Google Scholar
  70. 70.
    Törmälä P, Laiho J, Helevirata P, Rokkanen P, Vainionpää S, Böstman O, Kilpikari J (1986) Resorbable surgical device. Proc 5th PIMS Conference, Nordwijkerhout, Holland, 16/1Google Scholar
  71. 71.
    Tunc DC (1988) Absorbable bone fixation device, European Pat Spec, 0108635 (Appl 83306762.2)Google Scholar
  72. 72.
    Tunc DC, Balkrishna J (1988) Development of absorbable, ultra high strength polylactide. Polym Preprints (ACS) 29:383Google Scholar
  73. 73.
    Ciferri A, Ward IM (eds) (1979) Ultra-high modulus polymers. Applied Science, LondonGoogle Scholar
  74. 74.
    Eling B, Gogolewski S, Pennings A J (1982) Biodegradable materials of poly(L-lactide). Melt-spun and solution-spun fibres. Polymer 23:1587CrossRefGoogle Scholar
  75. 75.
    Gogolewski S, Pennings A J (1983) Resorbable materials of poly(L-lactide). II. Fibres spun from solution of poly(L-lactide) in good solvents. J Appl Polym Sci 28:1045CrossRefGoogle Scholar
  76. 76.
    Törmälä P, Rokkanen P, Vainionpää S, Laiho J, Heponen VP, Pohjonen T (1988) New surgical materials and devices, Intern Pat Appl W088/05312Google Scholar
  77. 77.
    Tunc DC, Lehman WB, Strongwater A, Kummer F, Kramer M (1986) Osteosynthesis device. Trans 12th Soc Biomat Meeting, Minneapolis-St Paul, USA, p 166Google Scholar
  78. 78.
    Tunc DC, Rohovsky MW, Jadhav B, Lehman WB, Strongwater A, Kummer F (1987) Body absorbable osteosynthesis device. Polym Sci Technol 35:87Google Scholar
  79. 79.
    Tunc DC (1986) State-of-the art in absorbable polymers in hard tissue repair. Polymer Preprints 27:431Google Scholar
  80. 80.
    Tunc DC, Rohovsky MW, Jadhav B, Lehman WB, Strongwater A, Kummer F (1985) Evaluation of body absorbable bone fixation device. Polym Mater Sci Eng 53:502Google Scholar
  81. 81.
    Hyon SH, Ikada Y (1986) Some surgical applications of poly(lactic acid). Proc 5th PIMS Conference, Nordwijkerhout, Holland, 40/1Google Scholar
  82. 82.
    Kelly BS, Dunn RL, Casper RA (1985) Totally resorbable high-strength composite material. Polym Sci Technol 35:75Google Scholar
  83. 83.
    Casper RA, Kelly BS, Dunn RL, Potter AG, Ellis DN (1985) Fiber-reinforced absorbable composite for orthopedic surgery. Polym Mater Sci Eng 53:497Google Scholar
  84. 84.
    Hollinger JO (1983) Preliminary report on the osteogenic potential of polylactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17:71PubMedCrossRefGoogle Scholar
  85. 85.
    Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop 27:290Google Scholar
  86. 86.
    Gay B, Bucher H (1985) Tierexperimentelle Untersuchungen zur Anwendung von absorbierbaren Osteosyntheseschrauben aus Polydioxanon (PDS). Unfallchirurg 88:126PubMedGoogle Scholar
  87. 87.
    Gerlach KL, Eitenmüller J (1987) In vivo evaluation of 8 different polymers for use as osteosynthesis material in maxillofacial surgery. In: Pizzoferrato A, Marchetti PG, Ravaglioli A, Lee AJC (eds) Biomaterials & Clinical Applications. Elsevier, Amsterdam, p 439Google Scholar
  88. 88.
    Eitenmüller J (1988) Biodegradierbare Plattenmaterialien im Tierversuch. In: Pannike A (ed) Unfallheilkunde, Heft 200. Springer, Berlin Heidelberg New York Tokyo, p 648Google Scholar
  89. 89.
    Greve H, Holste J (1985) Synthetic absorbable material for refixation of small fragments or of tendon or ligament osseous disrupture in animal experiments. In: Stelzner F (ed) Chirurgisches Forum ’85. Springer, Berlin Heidelberg New York Tokyo, p 9Google Scholar
  90. 90.
    Greve H, Clajus P, Dittrich H (1986) Verschluß der medianen Sternotomie mit resorbierbaren Kunststoffkordeln. Langenbecks Arch Chir 368:65PubMedCrossRefGoogle Scholar
  91. 91.
    Cornah J, Wallace J (1988) Polydioxanone (PDS): A new material for internal suspension and fixation. Br J Oral Maxillofacial Surg 26:250CrossRefGoogle Scholar
  92. 92.
    Rehm KE, Schultheis KH (1985) Bandersatz mit Polydioxanon (PDS). Unfallchirurgie 11:264PubMedCrossRefGoogle Scholar
  93. 93.
    Schweiberer L, Habermeyer P, Kruger P, Schiller K, Wiedeman E (1988) Der heutige Stand der Bandverletzungen großer Gelenke. Chirurg 59:689PubMedGoogle Scholar
  94. 94.
    Tscherne H, Lebenhoffer P, Blauth M, Hoffmann R (1987) Primäre Rekonstruktion von Kapselbandverletzungen des Kniegelenkes. Orthopäde 16:113PubMedGoogle Scholar
  95. 95.
    Haupt PR, Duspiva W (1988) PDS-Augmentationplastik bei Kreuzbandverletzungen. Unfallchirurg 91:97PubMedGoogle Scholar
  96. 96.
    Lebenhoffer P, Blauth M, Tscherne H (1988) Resorbierbare Augumentationplastik und funktionelle Nachbehandlung bei frischer vorderer Kreuzbandruptur. Z Orthop 126:296CrossRefGoogle Scholar
  97. 97.
    Aragona J, Parsons JR, Alexander H, Weiss AB (1983) Medical collateral ligament replacement with a partially absorbable tissue scaffold. Am J Sports Med 11:228PubMedCrossRefGoogle Scholar
  98. 98.
    van Lack W, Casser HR (1989) Arthroscopic treatment of osteochondritis dissecans of the femoral condyle. Arthroskopie 2:16Google Scholar
  99. 99.
    Dürnbach J (1987) Osteosynthese mit resorbierbaren PDS-Stiften nach sagittaler Spaltung und Rückversetzung des Unterkiefers. Dtsch Zahnärtzl Z 42:825Google Scholar
  100. 100.
    Greve H, Holste J (1985) Refixation osteochondraler Fragmente durch resorbierbare Kunststoffstifte. Akt Traumatol 15:145Google Scholar
  101. 101.
    Claes L, Burri C, Kiefer H, Mutschier W (1986) Resorbierbare Implantate zur Refixierung von osteochondralen Fragmenten in Gelenkflächen. Akt Traumatol 16:74Google Scholar
  102. 102.
    Haas HG (1986) PDS-Splinte zur Frakturbehandlung. Handchirurgie 18:295Google Scholar
  103. 103.
    Dürnbach J (1987) Osteosynthese mit resorbierbaren PDS-Stiften nach sagittaler Spaltung und Rückversetzung des Unterkiefers, erste Ergebnisse. Dtsch Zahnärztl Z 42:825Google Scholar
  104. 104.
    Becker D (1988) Erhaltungsoperation bei Radiusköpfchenfraktur mittels Pinnung mit dem resorbierbaren Material Biofix. Handchirurgie 20:157Google Scholar
  105. 105.
    Leixnering M, Moser KL, Poigenfürst J (1989) Die Verwendung von Biofix C zur Stabilisierung von In- nenknöchelfrakturen. Akt Traumatol 19:113Google Scholar
  106. 106.
    Hoffmann R, Krettek C, Haas N, Tscherne H (1989) Die distale Radiusfraktur. Frakturstabilisierung mit biodegradablen Osteosynthese-Stiften (Biofix). Unfallchirurg 92:430PubMedGoogle Scholar
  107. 107.
    Urist MR (1986) Biodegradable organic polymer delivery system for bone morphogenetic protein. US Patent 4.563.489Google Scholar
  108. 108.
    Brekke JH (1980) Device and method for treating and healing a newly created bone void. US Patent 4.186.448Google Scholar
  109. 109.
    Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamashidi K (1986) Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7:183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • D. Wolter
    • 1
  1. 1.Berufsgenossenschaftliches Unfallkrankenhaus HamburgHamburg 80Bundesrepublik Deutschland

Personalised recommendations