Skip to main content

Der Plattenfixateur interne für lange Röhrenknochen

  • Conference paper

Zusammenfassung

Das Prinzip des Plattenfixateurs hat sich in der Wirbelsäulenchirurgie bewährt [2]. Für den Einsatz eines derartigen Plattenfixateurs im Bereich der langen Röhrenknochen sind jedoch zusätzliche Forderungen zu berücksichtigen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CCA Biochem BV (1988) Polyactide. Information Bulletin, Gorinchem, Holland

    Google Scholar 

  2. Boehringer Ingelheim KG (1985) Resorbable Polyesters. Information Bulletin - Product Range, Ingelheim, FRG

    Google Scholar 

  3. Du Pont Company (1988) Medisorb, bioresorbable polymers, Bulletin 8/88, 138489A, Wilmington, Del., USA

    Google Scholar 

  4. Holmes PA (1985) Applications of PHB — a microbially produced biodegradable thermoplastic. Phys Tfechnol 16:32

    Article  CAS  Google Scholar 

  5. Brown DJ, Ragg PL, Webb A (1987) The potential medical applications of hydroxybutyrate-hydroxy-valerate copolymers. Proceedings, Medical Plastics ’87, Copenhagen, Denmark, 28.1

    Google Scholar 

  6. Katz AR, Himer RJ (1970) Evaluation of tensile and absorption properties of polyglycolic acid sutures. Surg Gynecol Obstet 131:701

    PubMed  CAS  Google Scholar 

  7. Postlethwait RW, Durham NC (1970) Polyglycolic acid surgical sutures. Arch Surg 101:489

    Article  PubMed  CAS  Google Scholar 

  8. Postlethwait RW (1974) Further study of polyglycolic acid suture. Am J Surg 127:617

    Article  PubMed  CAS  Google Scholar 

  9. Pavan A, Bosio M, Longo T (1979) A comparative study of poly(glycolic acid) and catgut suture materials: Histomorphology and mechanical properties. J Biomed Mater Res 13:477

    Article  PubMed  CAS  Google Scholar 

  10. Hermann JB, Kelly RJ, Higgins GA (1970) Polyglycolic acid sutures. Arch Surg 100:486

    Article  Google Scholar 

  11. Craig PH, Williams JA, Davis KW, Magoun AD, Levy AJ, Bogdansky IS, Jones JP (1975) A biologic comparison of Polyglactin 910 and polyglycolic acid synthetic absorbable sutures. Surg Gynecol Obstet 141:1

    PubMed  CAS  Google Scholar 

  12. Conn J, Oyasu P, Welsh M, Beal JM (1974) Vicryl (Polyglactin 910) synthetic absorbable sutures. Am J Surg 128:19

    Article  PubMed  Google Scholar 

  13. Matlaga BF, Salthouse TN (1983) Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910. J Biomed Mater Res 17:185

    Article  PubMed  CAS  Google Scholar 

  14. Salthouse TN (1984) Some aspects of macrophage behavior at the implant interface. J Biomed Mater Res 18:395

    Article  PubMed  CAS  Google Scholar 

  15. Salthouse TN (1986) Cellular enzyme activity at the polymer-tissue interface: A review. J Biomed Mater Res 10:197

    Article  Google Scholar 

  16. Salthouse TN, Matlaga BF (1976) Polyglactin 910 suture absorption and the role of cellular enzymes. Surg Gynecol Obstet 142:544

    PubMed  CAS  Google Scholar 

  17. Katz AR, Mukherjee DP, Kaganov AL, Gordon S (1985) A new synthetic monofilament absorbable suture made from polytrimethylene carbonate. Surg Gynecol Obstet 161:213

    PubMed  CAS  Google Scholar 

  18. Ray JA, Doddi N, Regula D, Williams JA, Melveger A (1981) Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet 13:644

    Google Scholar 

  19. Blaydes JE, Werblin TP (1982) 9–0 monofilament polydioxanone (PDS): A new synthetic absorbable suture for cataract wound closure. Ophtal Surg 13: 644

    CAS  Google Scholar 

  20. Delamy HM, Rudavsky AZ, Lans Z (1985) Preliminary clinical experience with the use of absorbable mesh splenorrhapy. J Ttauma 25:909

    Google Scholar 

  21. Dayton MT, Buchele BA, Shirazi SS, Hunt LB (1986) Use of absorbable mesh to repair contaminated abdominal-wall defects. Arch Surg 121:954

    Article  PubMed  CAS  Google Scholar 

  22. Maurer PK, McDonald JV (1985) Vicryl(Polyglactin 910) mesh as a dural substitute. J Neurosurg 63:448

    Article  PubMed  CAS  Google Scholar 

  23. Eigler FW, Gross E, Klaes W (1985) Resorbierbare Kunststoffnetze in der Abdominalchirurgie. Chirurg 56:376

    PubMed  CAS  Google Scholar 

  24. Lyrell J, Silberman H, Chandrasoma P, Niland J, Shull J (1989) Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet 168:227

    Google Scholar 

  25. Kronenthal RL (1975) Biodegradable polymers in medicine and surgery. In: Kronenthal R, Oser Z, Martin E (eds) Polymers in Medicine and Surgery. Plenum, New York, p 119

    Google Scholar 

  26. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery — Poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22:494

    Article  CAS  Google Scholar 

  27. Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Controlled Rel 4:155

    Article  CAS  Google Scholar 

  28. Ginde RM, Gupta RK (1987) In vitro chemical degradation of poly(glycolic acid) pellets and fibers. J Appl Polym Sci 33:2411

    Article  CAS  Google Scholar 

  29. Pitt CG, Gu Z (1987) Modification of the rates of chain cleavage of poly(E-caprolactone) and related polyesters in the solid state. J Controlled Rel 4:283

    Article  CAS  Google Scholar 

  30. Kenley RA, Lee MO, Mahoney TR, Sanders LM (1987) Poly(lactide-co-glycolide) decompositions kinetics in vivo and in vitro. Macromolecules 20:2398

    Article  CAS  Google Scholar 

  31. Chu CC (1981) An in vivo study of the effect of buffer on the degradation of poly(glycolic acid) sutures. J Biomed Mater Res 15:19

    Article  PubMed  CAS  Google Scholar 

  32. Chu CC (1985) Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery. Polymer 26:591

    Article  CAS  Google Scholar 

  33. Chu CC, Campbell ND (1982) Scanning electron microscopic study of the hydrolytic degradation of poly(glycolic acid) suture. J Biomed Mater Res 16:417

    Article  PubMed  CAS  Google Scholar 

  34. Chu CC (1982) The effect of pH on the vitro degradation of poly(glycolide lactide) copolymer absorbable sutures. J Biomed Mater Res 16:117

    Article  PubMed  CAS  Google Scholar 

  35. Williams DF, Mort E (1977) Enzyme accelerated hydrolysis of polyglycolic acid. J Bioeng 1:231

    PubMed  CAS  Google Scholar 

  36. Williams DF (1979) Some observations on the role of cellular enzymes in the in vitro degradation of polymers. In: Syrett BC, Acharya A (eds) Corrosion and Degradation of Implant Materials, ASTM STP 684, ASTM, 61

    Google Scholar 

  37. Miller ND, Williams DF (1984) The in vivo and in vitro degradation of poly(glycolic acid) suture materials as function of applied strain. Biomaterials 5:365

    Article  PubMed  CAS  Google Scholar 

  38. Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Engl Med 10:5

    Article  Google Scholar 

  39. Miller ND, Williams DF (1987) On the biodégradation of poly-B-hydroxybutyrate (PHB) homopolymer and poly-B-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials 8:129

    Article  PubMed  CAS  Google Scholar 

  40. Williams DF, Miller ND (1987) The degradation of polyhydroxybutyrate (PHB). In: Pizzoferato A, Marchetti PG, Ravaglioli, Lee AJC (eds) Biomaterials and Clinical Applications. Elsevier, Amsterdam, p 471

    Google Scholar 

  41. Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Polymers for biodegradable medical devices II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials 8:289

    Article  PubMed  CAS  Google Scholar 

  42. Knowles JC, Hastings GW (1989) Physical characteristics of polyhydroxybutyrate degradation, Proceedings PIMS VI, Norwijkerhout, Holland, 38/1

    Google Scholar 

  43. Gilding DK (1981) Biodegradable polymers. Biocompat Clin Implant Mater 2:209

    CAS  Google Scholar 

  44. Pittman CU Jr, Iqbal M, Chen CY, Heibert JN (1978) Radiation degradation of poly(a-hydroxybutyric acid) and poly(glycolic acid). J Poly Sci Polym Chem Ed 16:2721

    Article  CAS  Google Scholar 

  45. Gupta MC, Deshmukh VG (1983) Radiation effects on poly(lactic acid). Biomaterials 24:827

    CAS  Google Scholar 

  46. Fredericks RJ, Melveger AJ, Dolegiewitz LJ (1984) Morphological and structural changes in a copolymer of glycolide and lactide occuring as a result of hydrolysis. J Appl Polym Sci Polym Phys Ed 22:57

    Article  CAS  Google Scholar 

  47. Kulkarni RK, Pani KC, Neuman BS, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839

    Article  PubMed  CAS  Google Scholar 

  48. Cutright DE, Hunsuck EE (1971) Tissue reaction to the biodegradable polylactic acid suture. Oral Surg 31:134

    Article  PubMed  CAS  Google Scholar 

  49. Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29:393

    PubMed  CAS  Google Scholar 

  50. Outright DE, Hunsuck EE (1972) The repair of fractures of the orbital floor using biodegradable polylactic acid. Oral Surg 33:28

    Article  Google Scholar 

  51. Cutright DE, Perez B, Beasley JD, Larson WJ, Posey WR (1974) Degradation rates of polymers and copolymers of polylactic and polyglycolic acids. Oral Surg 37:142

    Article  PubMed  CAS  Google Scholar 

  52. Brady JM, Cutright DE, Miller RA, Battistone GC (1973) Resorption rate, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat. J Biomed Mater Res 7:155

    Article  PubMed  CAS  Google Scholar 

  53. Getter L, Cutright DE, Bhaskar SN, Augsburg JK (1972)A biodegradable intraosseous applicance in the treatment of mandibular fractures. J Oral Surg 30:344

    PubMed  CAS  Google Scholar 

  54. Ruderman RJ, Bernstein E, Kairinen E, Hegyeli AF (1973) Scanning electron microscopic study of surface changes on biodegradable sutures. J Biomed Mater Res 7:215

    Article  Google Scholar 

  55. Jamshidi K, Hyon SH, Nakamura T, Ikada Y, Shimizu Y, Teramatsu T (1986) In vitro and in vivo degradation of poly(L-lactide) fibres. In: Christel P, Meunier A, Lee AJC (eds) Biological and Biomechanical Performance of Biomaterials. Elsevier, Amsterdam, p 227

    Google Scholar 

  56. Bos RRM, Rozema FR, Boering G, Leenslag JW, Pennings A J, Verwey AB (1988) In vivo and in vitro degradation of poly(L-lactide) used for fracture fixation. In: de Putter C, de Lange GL, de Groot K, Lee AJC (eds) Implant Materials in Biofunction. Elsevier, Amsterdam, p 245

    Google Scholar 

  57. Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(L-lac-tide). VI. Plates and screws for internal fracture fixation. Biomaterials 8:70

    Article  PubMed  CAS  Google Scholar 

  58. Vert M, Christel P, Chabot F, Leray J (1984) Bioresorbable plastic materials for bone surgery. In: Hastings GW, Ducheyne P (eds) Macromolecular BiomaterialsCRC Press, Boca Raton, FL, p 119

    Google Scholar 

  59. Vert M, Chabot F (1981) Stereoregular bioresorbable polyesters for orthopedic surgery. Makromol Chem [Suppl 5]

    Google Scholar 

  60. Chawla AS, Chang TMS (1985–86) In vivo degradation of poly(lactic acid) of different molecular weights. Biomat Med Dev Art Org 13(3&4):153

    CAS  Google Scholar 

  61. Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(E-caprolactone), and their copolymers in vivo. Biomaterials 2:215

    Article  PubMed  CAS  Google Scholar 

  62. Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG (1985) The intracellular degradation of poly(E-caprolactone). J Biomed Mater Res 19:437

    Article  PubMed  CAS  Google Scholar 

  63. Pitt CG, Hendren RW, Schindler A, Woodward SC (1984) The enzymatic surface errosion of aliphatic polyesters. J Control Rel 1:3

    Article  CAS  Google Scholar 

  64. Gilbert RD, Stannett V, Pitt CG, Schindler A (1982) The design of biodegradable polymers: Two approaches. In: Grassie N (ed) Development in Polymer Degradation, vol 4. Applied Science, London, p 259

    Google Scholar 

  65. Mason NS, Miles CS, Sparks RE (1985) Hydrolytic degradation of poly(DL-lactide). Polym Mater Sci Eng 53:436

    Google Scholar 

  66. Schindler A, Harper D (1979) Polylactide. II. Viscosity-molecular weight relationships and unperturbed chain dimensions. J Polym Sci Chem Ed 17:2593

    Article  CAS  Google Scholar 

  67. Vert M, Chabot F, Leray J, Christel P (1978) French Pat Appl 78/29978

    Google Scholar 

  68. Garreau H, Vert M (1986) Dynamic mechanical properties of a bioresorbable composite material aimed at internal fixation of bone fractures. Proc 5th PIMS Conference, Nordwijkerhout, Holland, 17/1

    Google Scholar 

  69. Törmälä P, Rokkanen P, Laiho J, Tamminmäki M (1985) Finish Pat Appl 85/1828

    Google Scholar 

  70. Törmälä P, Laiho J, Helevirata P, Rokkanen P, Vainionpää S, Böstman O, Kilpikari J (1986) Resorbable surgical device. Proc 5th PIMS Conference, Nordwijkerhout, Holland, 16/1

    Google Scholar 

  71. Tunc DC (1988) Absorbable bone fixation device, European Pat Spec, 0108635 (Appl 83306762.2)

    Google Scholar 

  72. Tunc DC, Balkrishna J (1988) Development of absorbable, ultra high strength polylactide. Polym Preprints (ACS) 29:383

    Google Scholar 

  73. Ciferri A, Ward IM (eds) (1979) Ultra-high modulus polymers. Applied Science, London

    Google Scholar 

  74. Eling B, Gogolewski S, Pennings A J (1982) Biodegradable materials of poly(L-lactide). Melt-spun and solution-spun fibres. Polymer 23:1587

    Article  CAS  Google Scholar 

  75. Gogolewski S, Pennings A J (1983) Resorbable materials of poly(L-lactide). II. Fibres spun from solution of poly(L-lactide) in good solvents. J Appl Polym Sci 28:1045

    Article  CAS  Google Scholar 

  76. Törmälä P, Rokkanen P, Vainionpää S, Laiho J, Heponen VP, Pohjonen T (1988) New surgical materials and devices, Intern Pat Appl W088/05312

    Google Scholar 

  77. Tunc DC, Lehman WB, Strongwater A, Kummer F, Kramer M (1986) Osteosynthesis device. Trans 12th Soc Biomat Meeting, Minneapolis-St Paul, USA, p 166

    Google Scholar 

  78. Tunc DC, Rohovsky MW, Jadhav B, Lehman WB, Strongwater A, Kummer F (1987) Body absorbable osteosynthesis device. Polym Sci Technol 35:87

    CAS  Google Scholar 

  79. Tunc DC (1986) State-of-the art in absorbable polymers in hard tissue repair. Polymer Preprints 27:431

    CAS  Google Scholar 

  80. Tunc DC, Rohovsky MW, Jadhav B, Lehman WB, Strongwater A, Kummer F (1985) Evaluation of body absorbable bone fixation device. Polym Mater Sci Eng 53:502

    CAS  Google Scholar 

  81. Hyon SH, Ikada Y (1986) Some surgical applications of poly(lactic acid). Proc 5th PIMS Conference, Nordwijkerhout, Holland, 40/1

    Google Scholar 

  82. Kelly BS, Dunn RL, Casper RA (1985) Totally resorbable high-strength composite material. Polym Sci Technol 35:75

    Google Scholar 

  83. Casper RA, Kelly BS, Dunn RL, Potter AG, Ellis DN (1985) Fiber-reinforced absorbable composite for orthopedic surgery. Polym Mater Sci Eng 53:497

    CAS  Google Scholar 

  84. Hollinger JO (1983) Preliminary report on the osteogenic potential of polylactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17:71

    Article  PubMed  CAS  Google Scholar 

  85. Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop 27:290

    Google Scholar 

  86. Gay B, Bucher H (1985) Tierexperimentelle Untersuchungen zur Anwendung von absorbierbaren Osteosyntheseschrauben aus Polydioxanon (PDS). Unfallchirurg 88:126

    PubMed  CAS  Google Scholar 

  87. Gerlach KL, Eitenmüller J (1987) In vivo evaluation of 8 different polymers for use as osteosynthesis material in maxillofacial surgery. In: Pizzoferrato A, Marchetti PG, Ravaglioli A, Lee AJC (eds) Biomaterials & Clinical Applications. Elsevier, Amsterdam, p 439

    Google Scholar 

  88. Eitenmüller J (1988) Biodegradierbare Plattenmaterialien im Tierversuch. In: Pannike A (ed) Unfallheilkunde, Heft 200. Springer, Berlin Heidelberg New York Tokyo, p 648

    Google Scholar 

  89. Greve H, Holste J (1985) Synthetic absorbable material for refixation of small fragments or of tendon or ligament osseous disrupture in animal experiments. In: Stelzner F (ed) Chirurgisches Forum ’85. Springer, Berlin Heidelberg New York Tokyo, p 9

    Google Scholar 

  90. Greve H, Clajus P, Dittrich H (1986) Verschluß der medianen Sternotomie mit resorbierbaren Kunststoffkordeln. Langenbecks Arch Chir 368:65

    Article  PubMed  CAS  Google Scholar 

  91. Cornah J, Wallace J (1988) Polydioxanone (PDS): A new material for internal suspension and fixation. Br J Oral Maxillofacial Surg 26:250

    Article  CAS  Google Scholar 

  92. Rehm KE, Schultheis KH (1985) Bandersatz mit Polydioxanon (PDS). Unfallchirurgie 11:264

    Article  PubMed  CAS  Google Scholar 

  93. Schweiberer L, Habermeyer P, Kruger P, Schiller K, Wiedeman E (1988) Der heutige Stand der Bandverletzungen großer Gelenke. Chirurg 59:689

    PubMed  CAS  Google Scholar 

  94. Tscherne H, Lebenhoffer P, Blauth M, Hoffmann R (1987) Primäre Rekonstruktion von Kapselbandverletzungen des Kniegelenkes. Orthopäde 16:113

    PubMed  CAS  Google Scholar 

  95. Haupt PR, Duspiva W (1988) PDS-Augmentationplastik bei Kreuzbandverletzungen. Unfallchirurg 91:97

    PubMed  CAS  Google Scholar 

  96. Lebenhoffer P, Blauth M, Tscherne H (1988) Resorbierbare Augumentationplastik und funktionelle Nachbehandlung bei frischer vorderer Kreuzbandruptur. Z Orthop 126:296

    Article  Google Scholar 

  97. Aragona J, Parsons JR, Alexander H, Weiss AB (1983) Medical collateral ligament replacement with a partially absorbable tissue scaffold. Am J Sports Med 11:228

    Article  PubMed  CAS  Google Scholar 

  98. van Lack W, Casser HR (1989) Arthroscopic treatment of osteochondritis dissecans of the femoral condyle. Arthroskopie 2:16

    Google Scholar 

  99. Dürnbach J (1987) Osteosynthese mit resorbierbaren PDS-Stiften nach sagittaler Spaltung und Rückversetzung des Unterkiefers. Dtsch Zahnärtzl Z 42:825

    Google Scholar 

  100. Greve H, Holste J (1985) Refixation osteochondraler Fragmente durch resorbierbare Kunststoffstifte. Akt Traumatol 15:145

    CAS  Google Scholar 

  101. Claes L, Burri C, Kiefer H, Mutschier W (1986) Resorbierbare Implantate zur Refixierung von osteochondralen Fragmenten in Gelenkflächen. Akt Traumatol 16:74

    CAS  Google Scholar 

  102. Haas HG (1986) PDS-Splinte zur Frakturbehandlung. Handchirurgie 18:295

    CAS  Google Scholar 

  103. Dürnbach J (1987) Osteosynthese mit resorbierbaren PDS-Stiften nach sagittaler Spaltung und Rückversetzung des Unterkiefers, erste Ergebnisse. Dtsch Zahnärztl Z 42:825

    Google Scholar 

  104. Becker D (1988) Erhaltungsoperation bei Radiusköpfchenfraktur mittels Pinnung mit dem resorbierbaren Material Biofix. Handchirurgie 20:157

    CAS  Google Scholar 

  105. Leixnering M, Moser KL, Poigenfürst J (1989) Die Verwendung von Biofix C zur Stabilisierung von In- nenknöchelfrakturen. Akt Traumatol 19:113

    CAS  Google Scholar 

  106. Hoffmann R, Krettek C, Haas N, Tscherne H (1989) Die distale Radiusfraktur. Frakturstabilisierung mit biodegradablen Osteosynthese-Stiften (Biofix). Unfallchirurg 92:430

    PubMed  CAS  Google Scholar 

  107. Urist MR (1986) Biodegradable organic polymer delivery system for bone morphogenetic protein. US Patent 4.563.489

    Google Scholar 

  108. Brekke JH (1980) Device and method for treating and healing a newly created bone void. US Patent 4.186.448

    Google Scholar 

  109. Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamashidi K (1986) Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7:183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Wolter, D. (1991). Der Plattenfixateur interne für lange Röhrenknochen. In: Wolter, D., Zimmer, W. (eds) Die Plattenosteosynthese und ihre Konkurrenzverfahren. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76328-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76328-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53536-2

  • Online ISBN: 978-3-642-76328-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics