Advertisement

Variance Estimation in the Additive Tree Model

  • K. Wolf
  • P. O. Degens
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

By the use of stochastic models it is possible to judge procedures for fitting additive trees to dissimilarity data. We use the simple additive error model (Degens 1983) to analyse the accuracy of an estimated additive tree by estimating its variance, too. Analogously to the three-object variance estimator in the ultrametric case (cf. Lausen 1987 or Lausen & Degens 1986) we propose a four-object variance estimator based on the simple maximum-likelihood (ML-) variance estimation for all subsets consisting of any four objects of an additive tree. In contrast to variance estimation using the residual sum of squares this new estimator is not based on the assumed i.e. estimated structure of the given dissimilarity data. In the framework of a Monte-Carlo study we analyse the four-object variance estimator and compare it to variance estimators based on linear models in the case of local solutions of the underlying approximation problem (cf. Vach 1988).

Keywords

Additive Tree Variance Estimator Symmetric Tree Dissimilarity Data Exterior Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Brölsch, J. (1983a): Minimum-Quadrat-Schätzung von Evolutionsbäumen. In: Dahlberg, I. & Schader, M. (eds.): Automatisierung in der Klassifikation. Studien zur Klassifikation 13, 177–187.Google Scholar
  2. Brölsch, J. (1983b): Schätzung von Evolutionsbäumen mit der Methode der kleinsten Quadrate. Diplom arbeit, Fachbereich Statistik, Universität Dortmund.Google Scholar
  3. Buneman, P. (1971): The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G. & Tautu, P. (eds): Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press, 387–395.Google Scholar
  4. Degens, P.O. (1983): Hierarchische Clusteranalyse. Approximation und Agglomeration. In: Dahlberg, I. & Schader, M. (eds.): Automatisierung in der Klassifikation. Studien zur Klassifikation 13, 177–187.Google Scholar
  5. Lausen, B. (1987): Zur Beurteilung der Rekonstruktion phylogenetischer Stammbäume anhand genetischer Distanzen. Diplomarbeit, Fachbereich Statistik, Universität Dortmund.Google Scholar
  6. Lausen, B. & Degens, P.O. (1986): Variance estimation and the reconstruction of phylogenies. In: Degens, P.O., Hermes, H.J. & Opitz, O. (eds.): Die Klassifikation und ihr Umfeld (Classification and its environment). Indeks-Verlag, Frankfurt, 306–314.Google Scholar
  7. Vach, W. (1988): Schätzung bewerteter Bäume als Approximationsproblem. Diplomarbeit, Fachbereich Statistik, Universität Dortmund.Google Scholar
  8. Vaughan, J.R & Venables, W.N. (1972): Permanent expressions for order statistic densities. Journal of the Royal Statistical Society, Ser. B, 34, 308–310.zbMATHMathSciNetGoogle Scholar
  9. Wolf, K. (1989): Kritische Untersuchung einiger Verfahren zur Schätzung bewerteter Bäume. Diplomarbeit, Fachbereich Statistik, Universität Dortmund.Google Scholar
  10. Wolf, K. & Degens, P.O. (1989): On properties of additive tree algorithms. In: Opitz, O. (ed.): Conceptual and Numerical Analysis of Data. Proc. of the 13th Conference of the Gesellschaft für Klassifikation e.V.. Springer-Verlag, 256–265.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1991

Authors and Affiliations

  • K. Wolf
    • 1
  • P. O. Degens
    • 2
  1. 1.Mathematisches Institut für UmwelthygieneUniversität BayreuthBayreuthGermany
  2. 2.Medizinisches Institut für UmwelthygieneUniversität DüsseldorfDüsseldorfGermany

Personalised recommendations