Advertisement

Statistical Analysis of Genetic Distance Data

  • B. Lausen
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Homology between biological objects (DNA sequences, species, etc.) can be measured by genetic distance data. A genetic distance may be computed from aligned genetic sequence data; e.g. DNA sequences. We discuss the dot-matrix plot as a possible graphical check of the goodness of the alignment. The assumption of identical distributions along the sequence positions is often inappropriate. Therefore, we discuss aspects of an heuristic which allows the combined exploration of genetic distance between the sequences and of different positional variation. A tree structure is not assumed for such an exploration. Having computed a genetic distance, phylogenetic relations may be analysed by three- and four-objects methods. The approach is illustrated by a set of tRNA sequences.

Keywords

Genetic Distance Maximum Likelihood Estimator Variance Estimator Positional Variation Genetic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Barry, D., Hartigan, J.A. (1987): Statistical analysis of hominoid molecular evolution. Statistical Science, 2, 2, 191–210.CrossRefMathSciNetGoogle Scholar
  2. Bock, H.H. (1989): Datenanalyse zur Strukturierung und Ordnung von Information. In: Wille, R. (ed.): Klassifikation und Ordnung, Studien zur Klassifikation 19. Indeks-Verlag, Prankfurt, 1–22.Google Scholar
  3. Degens, P.O. (1983): Hierarchical cluster methods as maximum likelihood estimators. In: Felsenstein, J. (ed.): Numerical Taxanomy. Springer-Verlag, Berlin Heidelberg, 249–253.CrossRefGoogle Scholar
  4. Degens, P.O. (1988): Reconstruction of phylogenies by weighted genetic distances. In: Bock, H.H. (ed.): Classification and related methods of data analysis. North Holland, Amsterdam, 727–739.Google Scholar
  5. Degens, P.O. (1989): Ansätze bei der Mathematisierung der biologischen Systematik. In: Wille, R. (ed.): Klassifikation und Ordnung, Studien zur Klassifikation 19. Indeks-Verlag, Frankfurt, 23–38.Google Scholar
  6. Degens, P.O., Lausen, B., AND Vach, W. (1990): Reconstruction of phylogenies by distance data: Mathematical framework and statistical analysis. In: Deuber, W., Dress, A., AND v. Haeseler, A. (eds.): Trees and hierarchical structures, Lecture Notes in Biomathematics. Springer-Verlag, Berlin Heidelberg (to appear).Google Scholar
  7. Felsenstein, J. (1988): Phylogenies from molecular sequences: Inference and reliability. Annual Review of Genetics, 22, 521–565.CrossRefGoogle Scholar
  8. Kimura, M. (1980): A simple method for estimating evolutionary rates on base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  9. Kruskal, J.B., Dyen, I., AND Black, P. (1971): The vocabulary method of reconstructing language trees: Innovations and large-scale applications. In: Hodson, F.R., Kendall, D.G., AND Tautu, P. (ed.): Mathematics in the archeological and historical sciences. Edinburgh University Press, Edinburgh, 361–380.Google Scholar
  10. Lausen, B. (1989): Exploring homologous tRNA sequence data: Positional mutation rates and genetic distance. In: Opitz, O. (ed.): Conceptual and numerical analysis of data. Springer-Verlag, Berlin Heidelberg, 381–388.Google Scholar
  11. Lausen, B., AND Degens, P.O. (1986): Variance estimation and the reconstruction of phylogenies. In: Degens, P.O., Hermes, H.-J., AND Opitz, O. (ed.): Die Klassifikation und ihr Umfeld (Classification and its Environment), Studien zur Klassifikation 17. Indeks-Verlag, Frankfurt, 306–314.Google Scholar
  12. Lausen, B., AND Degens, P.O. (1988A): Bootstrap evaluation in hierarchical cluster analysis. In: Diday, E. (ed.): Data analysis and informatics V. North Holland, Amsterdam, 267–276.Google Scholar
  13. Lausen, B., AND Degens, P.O. (1988B): Evaluation of the reconstruction of phylogenies with DNADNA hybridization data. In: Bock, H.H. (ed.): Classification and related methods of data analysis. North Holland, Amsterdam, 367–374.Google Scholar
  14. Mccullagh, P., AND Nelder, J.A. (1989 2nd ed.): Generalized linear models. Chapman and Hall, London.zbMATHGoogle Scholar
  15. Nei, M. (1987): Molecular evolutionary genetics. Columbia University Press, New York.Google Scholar
  16. Sheldon, F.H., AND Bledsoe, A.H. (1989): Indexes to the reassociation and stability of solution of DNA hybrids. Journal of Molecular Evolution, 29, 328–343.CrossRefGoogle Scholar
  17. Sibley, C.G., AND Ahlquist, J.E. (1987): DNA hybridization evidence of hominoid primates phylogeny: Results of an expanded data set. Journal of Molecular Evolution, 26, 1-2, 99–123.CrossRefGoogle Scholar
  18. Sprinzl, M., Hartmann, T., Weber, J., Blank, J., AND Zeidler, R. (1989): Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Research, 17, supplement, rl–rl72.Google Scholar
  19. Vach, W. (1989): Least squares approximations of additive trees. In: Opitz, O. (ed.): Conceptual and numerical analysis of data. Springer-Verlag, Berlin Heidelberg, 231–238.Google Scholar
  20. Vach, W., AND Degens, P.O. (1991): A new approach to isotonic agglomerative hierarchical clustering. Journal of Classification (to appear).Google Scholar
  21. Weir, B.S. (1989): Building trees with DNA sequences. Biometric Bulletin, 6, 4, 21–23.Google Scholar
  22. Wolf, K., AND Degens, P.O. (1989): On properties of additive tree algorithms. In: Opitz, O. (ed.): Conceptual and numerical analysis of data. Springer-Verlag, Berlin Heidelberg, 256–265.CrossRefGoogle Scholar
  23. Wolf, K., AND Degens, P.O. (1990): Variance estimation in the additive tree model, (this volume).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1991

Authors and Affiliations

  • B. Lausen
    • 1
  1. 1.Fachbereich StatistikUniversität DortmundDortmund 50Germany

Personalised recommendations