Advertisement

A Mathematical Model for Conceptual Knowledge Systems

  • Peter Luksch
  • Rudolf Wille
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Objects, attributes, and concepts are basic notions of conceptal knowledge; they are linked by the following four basic relations : an object has an attribute, an object belongs to a concept, an attribute abstracts from a concept, and a concept is a subconcept of another concept. These structural elements are well mathematized in formal concept analysis. Therefore, conceptual knowledge systems can be mathematically modelled in the frame of formal concept analysis. How such modelling may be performed is indicated by an example of a conceptual knowledge system. The formal definition of the model finally clarifies in which ways representation, inference, acquisition, and communication of conceptual knowledge can be mathematically treated.

Keywords

Formal Concept Conceptual Knowledge Basic Relation Concept Lattice Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Burmeister: Merkmalsimplilationen bei unsicherem Wissen. In: W. Lex (Hrsg): Proceedings der Clausthaler Tagung über “Begriffsanalyse und Künstlicher Intelligenz” (erscheint)Google Scholar
  2. [2]
    B. Ganter: Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter, R. Wille, K.E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1987, 241–254.Google Scholar
  3. [3]
    B. Ganter, R. Wille: Formale Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1991.Google Scholar
  4. [4]
    G. Grätzer: Universal algebra. D. van Nostrand Co., 1968 (2nd ed., Springer-Verlag, New York 1979).zbMATHGoogle Scholar
  5. [5]
    C. Herrmann, P. Luksch, R. Wille: Inference in conceptual knowledge system (in preparation)Google Scholar
  6. [6]
    C. Herrmann, P. Luksch, M. Skorsky, R. Wille: Algebras of semi-concepts and double Boolean algebras (in preparation)Google Scholar
  7. [7]
    H. Heyde: Hörner und Zinken. Musikinstrumenten-Museum der Universität Leipzig. Katalog Bd.5. VEB Deutscher Verlag für Musik, Leipzig 1982.Google Scholar
  8. [8]
    U. Kipke, R. Wille: Begriffsverbände als Ablaufschema zur Gegenstandsbestimmung. In: P. Degens, H. Hermes, O. Opitz (Hrsg.): Die Klassifikation und ihr Umfeld. INDEX Verlag, Frankfurt 1986, 164–170.Google Scholar
  9. [9]
    P. Luksch, R. Wille: Formal concept analysis of paired comparisons. In: H.H. Bock (ed.): Classification and related methods of data analysis. North-Holland, Amsterdam 1988, 167–176.Google Scholar
  10. [10]
    F. Vogt, C. Wachter, R. Wille: Data analysis based on a conceptual file. This volumne.Google Scholar
  11. [11]
    H. Wagner: Begriff. In: H. Krings, H.M. Baumgartner, C. Wild (Hrsg.): Handbuch philosophischer Grundbegriffe. Kösel, München 1973, 191–2Google Scholar
  12. [12]
    R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470.Google Scholar
  13. [13]
    R. Wille: Liniendiagramme hierarchischer Begriffssysteme. In: H.H. Bock (Hrsg.): Anwendungen der Klassifikation: Datenanalyse und numerische Klassifikation. INDEKS Verlag, Frankfurt 1984, 32–51.Google Scholar
  14. [14]
    R. Wille: Bedeutungen von Begriffsverbänden. In: B. Ganter, R. Wille, K.E. Wolff (Hrsg): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1987, 161–211.Google Scholar
  15. [15]
    R. Wille: Lattices in data analysis: how to draw them with a computer. In: I. Rival (ed.): Algorithms and order. Kluwer, Dordrecht-Boston 1989, 33–58.Google Scholar
  16. [16]
    R. Wille: Geometric representations of concept lattices. In: O. Opitz (ed.): Conceptual and numerical analysis of data. Springer-Verlag, Berlin-Heidelberg 1989, 239–255.Google Scholar
  17. [17]
    R. Wille: Knowledge acquisition by methods of formal concept analysis. In: E. Diday (ed.): Data analysis, learning symbolic and numeric knowledge. Nova Science Publ., New York-Budapest 1989, 365–380.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1991

Authors and Affiliations

  • Peter Luksch
    • 1
  • Rudolf Wille
    • 1
  1. 1.Forschungsgruppe Begriffsanalyse Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations