Skip to main content

Photosynthesis. Carbon Metabolism: On Regulation at the Cellular Level and at the Whole Plant Level, and Some Considerations Concerning the Interactions of These Regulatory Events with the Increasing Level of Atmospheric C02

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 52))

Abstract

“Die anthropogenen C02-Emissionen verbleiben derzeit zu etwa 50 Prozent in der Atmosphere. Es ist möglich, daß ein Teil des verbleibenden Rests aufgrund der zunehmenden Photosyntheseleistung der Pflanzen, die durch den steigenden C02-Gehalt hervorgerufen werden kann (C02-Diingungseffekt) in der terrestrischen Biosphare gespeichert wird”. (Deutscher Bundestag, 11. Wahlperiode, Drucksache 11/3246,1988, S. 195)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CM, Wilkins MB (1989) Planta 180: 61–73.

    Article  CAS  Google Scholar 

  • Angelopoulos K, Stamatakis K, Manetas Y, Gavalas NA (1988) Photosyn Res 18: 317–325.

    Article  CAS  Google Scholar 

  • Antonielli M, Pocceschi N, Lupattelli M (1990) Physiol Plant 78: 187–192.

    Article  CAS  Google Scholar 

  • Apel P, Peisker M (1988) Biochem Physiol Pflanzen 183: 439–442.

    Google Scholar 

  • Bate GC, Sültemeyer DF, Fock HP (1988) Photosyn Res 16: 219–231.

    Article  CAS  Google Scholar 

  • Beck E, Ziegler P (1989) Annu Rev Plant Physiol Plant Mol Biol 40: 95–117.

    Article  CAS  Google Scholar 

  • Beck E, Scheibe R, Reiner J (1989) Plant Physiol 90: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Besford RT, Hand DW (1989) J Exp Bot 40: 329–336.

    Article  CAS  Google Scholar 

  • Bhattacharya NC, Bhattachaiya S, Strain BR, Biswas PK (1989) J Plant Physiol 135: 261–266.

    CAS  Google Scholar 

  • Blechschmidt-Schneider S, Ferrar P, Osmond CB (1989) Planta 177: 515–525.

    Article  CAS  Google Scholar 

  • Borchert S, GroBe H, Heldt HW (1989) FEBS Lett 253:183–186.

    Google Scholar 

  • Bremberger C, Haschke H-P, Liittge U (1988) Planta 175:465–470.

    Google Scholar 

  • Brooks A, Portis AR, Sharkey TD (1988) Plant Physiol 88:850–853.

    Google Scholar 

  • Brown RH, Hattersley PW (1989) Plant Physiol 91:1543–1550.

    Google Scholar 

  • Brulfert J, Kluge M, Giiglii S, Queiroz O (1988) J Plant Physiol 133:222–227.

    Google Scholar 

  • Budde RJA, Randall DD (1990) Proc Natl Acad Sci USA 87:673–676.

    Google Scholar 

  • Burns BD, Beardall J (1987) J Exp Mar Bio Ecol 107:75–86.

    Google Scholar 

  • Butz ND, Sharkey TD (1989) Plant Physiol 89:735–739.

    Google Scholar 

  • Cadet F, Meunier J-C (1988) Biochem J 253:243–248.

    Google Scholar 

  • Caemmerer S von, Hubick KT (1989) Planta 178:475–481.

    Google Scholar 

  • Campbell WJ, Ogren WL (1990) Plant Physiol 92:110–115.

    Google Scholar 

  • Campbell WJ, Allen LH, Bowes G (1988) Plant Physiol 88:1310–1316.

    Google Scholar 

  • Cardon ZG, Mott KA (1989) Plant Physiol 89:1253–1257.

    Google Scholar 

  • Carnal NW, Black CC (1989) Plant Physiol 90:91–100.

    Google Scholar 

  • Carter PJ, Nimmo HG, Fewson CA, Wilkins MB (1990) FEBS Lett 263:233–236.

    Google Scholar 

  • Caspar T, Lin T-P, Monroe J, Bernhard W, Spilatro S, Preiss J, Somerville C (1989) Proc Nad Acad Sci USA 86:5830–5833.

    Google Scholar 

  • Chastain CJ, Chollet R (1989) Planta 179:81–88.

    Google Scholar 

  • Chen G-X, Asada K (1989) Plant Cell Physiol 30:987–998.

    Google Scholar 

  • Chen Z, Spreitzer RJ (1989) J Biol Chem 264:3051–3053.

    Google Scholar 

  • Cheng S-H, Moore BD, Wu J, Edwards GE, Ku MSB (1989) Plant Physiol 89:1129–1135.

    Google Scholar 

  • Cloux H du, Andre M, Gerbaud A, Daguenet A (1989) Photosynthetica 23:145–153.

    Google Scholar 

  • Collatz GJ, Berry JA, Farquhar GD, Pierce J (1990) Plant Cell Environ 13:219–225.

    Google Scholar 

  • Colman B, Rotatore C (1988) J Exp Bot 39:1025–1032.

    Google Scholar 

  • Conroy JP, Kuppers M, Kuppers B, Virgona J, Barlow EWR (1988) Plant Cell Environ 11:91–98.

    Google Scholar 

  • Cornic G, Le Gouallec J-L, Briantais JM, Hodges M (1989) Planta 177:84–90.

    Google Scholar 

  • Cote FX, Andre M, Folliot M, Massimino D, Daguenet A (1989) Plant Physiol 89:61–68.

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (1989) Plant Physiol 91:469–472.

    Google Scholar 

  • Crawford NA, Droux M, Kosower NS, Buchanan BB (1989) Arch Biochem Biophys 271:223–229.

    Google Scholar 

  • Critchley C (1988) Aust J Plant Physiol 15:27–41.

    Google Scholar 

  • Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Plant Physiol 91:1179–1187.

    Google Scholar 

  • Dahlman RC, Strain BR, Rogers HH (1985) J Environ Qual 14:1–8.

    Google Scholar 

  • Dancer JE, ap Rees T (1989) J Plant Physiol 135:197–206.

    Google Scholar 

  • Dancer J, Neuhaus HE, Stitt M (1990) Plant Physiol 92:637–641.

    Google Scholar 

  • DeLucia EH, Sasek TW, Strain BR (1985) Photosyn Res 7:175–184.

    Google Scholar 

  • Demmig B, Winter K, Kriiger A, Czygan F-C (1987) Plant Physiol 84:218–224.

    Google Scholar 

  • Demmig-Adams B, Winter K, Kriiger A, Czygan F-C (1989) Plant Physiol 90:881–886.

    Google Scholar 

  • Demmig-Adams B, Adams WW, Heber U, Neimanis S, Winter K, Kriiger A, Czygan F-C, Bilger W, Bj5rkman O (1990a) Plant Physiol 92:293–301.

    Google Scholar 

  • Demmig-Adams B, Adams WW, Czygan F-C, Schreiber U, Lange OL (1990b) Planta 180:582–589.

    Google Scholar 

  • Diethelm R, Shibles R (1989) J Plant Physiol 134:70–74.

    Google Scholar 

  • Dixon GK, Merrett MJ (1988) New Phytol 109:47–51.

    Google Scholar 

  • Dixon GK, Brownlee C, Merrett MJ (1989) Planta 178:443– 449.

    Google Scholar 

  • Dons C (1988) Photosynthetica 22:328–334.

    Google Scholar 

  • Dujardyn M, Foyer CH (1989) Plant Physiol 91:1562–1568.

    Google Scholar 

  • Eamus D, Jarvis PG (1989) Adv Ecol Res 19:1–55.

    Google Scholar 

  • Echevarria C, Vidal J. LeMarechal P, Brulfert J, Ranjeva R, Gadal P (1988) Biochem Biophys Res Commun 155:835–840.

    Google Scholar 

  • Edmondson DL, Kane HJ, Andrews TJ (1990) FEBS Lett 260:62–66.

    Google Scholar 

  • Entwistle G, ap Rees T (1988) Biochem J 255:391–396.

    Google Scholar 

  • Esple GS, Miller AG, Birch DG, Canvin DT (1988a) Plant Physiol 87:551–554.

    Google Scholar 

  • Espie GS, MiUer AG, Canvin DT (1988b) Plant Physiol 88:757–763.

    Google Scholar 

  • Espie GS, Miller AG, Canvin (1989) Plant Physiol 91:387–394.

    Google Scholar 

  • Farazdaghi H, Edward GE (1988) Plant Cell Environ 11:789–798.

    Google Scholar 

  • Fathi M, Schnarrenberger C (1990) Plant Physiol 92:710–717.

    Google Scholar 

  • Fetene M, Lee HSJ, Liittge U (1990) New Phytol 114:399–406.

    Google Scholar 

  • Flugge IU, Woo KC, Heldt HW (1988) Planta 174:534–541.

    Google Scholar 

  • Fritz E, Evert RG, Nasse H (1989) Planta 178:1–9.

    Google Scholar 

  • Furbank RT, Foyer CH (1988) New Phytol 109:265–277.

    Google Scholar 

  • Furbank RT, Jenkins CLD, Hatch MD (1989) Plant Physiol 91:1364–1371.

    Google Scholar 

  • Furbank RT, Jenkins CLD, Hatch MD (1990) Aust J Plant Physiol 17:1–7.

    Google Scholar 

  • Galloway CM, Dugger WM, Black CC (1988) Plant Physiol 88:980–982.

    Google Scholar 

  • Garab G, Lajkd F, Mustirdy L. Marton L (1989) Planta 179:349–358.

    Google Scholar 

  • Gardestrdm P, Wigge B (1988) Plant Physiol 88:69–76.

    Google Scholar 

  • Gifford RM (1988) Interactions with vegetation In: Pearman GI (ed) Greenhouse: planning for climate change. CSIRO, Melbourne, pp 83–89.

    Google Scholar 

  • Gilck H, Beck E (1974) Z Pflanzenphysiol 72:395–409.

    Google Scholar 

  • Givan CV, Tsutakawa S, Hodgson JM, David N, Randall DD (1988) J Plant Physiol 132:593–599.

    Google Scholar 

  • Goyal A, Tolbert NE (1989) Plant Physiol 89:1264–1269.

    Google Scholar 

  • Grande KD, Marra J, Langdon C, Heinemann K, Bender ML (1989) J Expt Mar Biol Ecol 129:95–120.

    Google Scholar 

  • Griffiths H (1988) Plant Cell Environ 11:603–611.

    Google Scholar 

  • Griffiths H, Ong BL, Avadhani PN, Goh CJ (1989) Planta 179:115–122.

    Google Scholar 

  • Gross A, Briickner G, Heldt HW, Fliigge U-I (1990) Planta 180:262–271.

    Google Scholar 

  • Guralnick LJ, Ting DP (1988) Plant Cell Environ 11:811–818.

    Google Scholar 

  • Gutteridge S (1990) Biochem Biophys Acta 1015:1–14.

    Google Scholar 

  • Gutteridge S, Julien B (1989) FEBS Lett 254:225–230.

    Google Scholar 

  • Hager A (1975) Ber Dtsch Bot Gesell 88:27–44.

    Google Scholar 

  • Harmon ME, Ferrell WK, Franklin JF (1990) Science 247:699–702.

    Google Scholar 

  • Haschke H-P, Grotsch S, Liittge U (1988) J Plant Physiol 132:604–607.

    Google Scholar 

  • Hatzfeld W-D, Stitt M (1990) Planta 180:198–204.

    Google Scholar 

  • Hatzfeld W-D, Dancer J. Stitt M (1989) FEBS Lett 254:215–218.

    Google Scholar 

  • Hausler RE, Holtum JAM, Latzko E (1989) Plant Physiol 90:1498–1505.

    Google Scholar 

  • Havaux M (1989) Plant Physiol 89:286–292.

    Google Scholar 

  • Heber U, Viil J, Neimanis S, Mimura T, Dietz K-J (1989) Z Naturforsch 44c:524–536.

    Google Scholar 

  • Holbrook GP, Bowes G, Salvucci ME (1989) Plant Physiol 90:673–678.

    Google Scholar 

  • Huber SC (1989) Plant Physiol 91:656–662.

    Google Scholar 

  • Huber JLA, Huber SC, Neilsen TH (1989a) Arch Biochem Biophys 270:681–690.

    Google Scholar 

  • Huber SC, Neilsen TH, Huber JLA, Pharr DM (1989b) Plant Cell Physiol 30:277–285.

    Google Scholar 

  • Hubick KT, Hammer GL, Farquhar GD, Wade LJ, von Caemmerer S, Henderson SA (1990) Plant Physiol 92:534–537.

    Google Scholar 

  • Huerta AJ, Ting IP (1988) Plant Physiol 88:183–188.

    Google Scholar 

  • Huppe HC, de Lamotte-Guery F, Jacquot JP, Buchanan BB (1990) Planta 180:341–351.

    Google Scholar 

  • Husic HD, Kitayama M, Togasaki RK, Moroney JV, Moms KL, Tolbert NE (1989) Plant Physiol 89:904–909.

    Google Scholar 

  • Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW (1988) Planta 175:452–459.

    Google Scholar 

  • Idso SB, Kimball BA (1989) Environ Exp Bot 29:135–139.

    Google Scholar 

  • Iglesias AA, Andreo CS (1990) Plant Physiol 92:66–72.

    Google Scholar 

  • Jawali N (1990) Arch Biochem Biophys 277:61–68.

    Google Scholar 

  • Jenkins CLD, Furbank RT, Hatch MD (1989) Plant Physiol 91:1372–1381.

    Google Scholar 

  • Jiao J-A, Chollet R (1989) Arch Biochem Biophys 269:526–535.

    Google Scholar 

  • Kana TM, Glibert PM, Goericke R, Welschmeyer NA (1988) Limnol Oceanogr 33:1623–1627.

    Google Scholar 

  • Kelly GJ (1989) Oceanogr Mar Biol Annu Rev 27:11–44.

    Google Scholar 

  • Kimball B (1983) Agron J 75:779–788.

    Google Scholar 

  • Kiss F, Johnson TC, Klecan AL, Vincze G, Buchanan BB, Balogh A (1989) Photosyn Res 21:123–128.

    Google Scholar 

  • Kfeezkowski LA, Edwards GE (1989) Plant Physiol 91:278–286.

    Google Scholar 

  • Kleczkowski LA, Randall DD (1988) Photosynthetica 22:112–115.

    Google Scholar 

  • Kleczkowski LA, Givan CV, Randall DD, Loboda T (1988) Physiol Plant 74:763–769.

    Google Scholar 

  • Klock G, Siiltemeyer DF, Fock HP, Kreuzberg K (1989) Physiol Plant 75:109–113.

    Google Scholar 

  • Kluge M, Maier P, Brulfert J, Faist K, Wollny E (1988) J Plant Physiol 133:252–256.

    Google Scholar 

  • Kobza J, Seemann JR (1988) Proc Natl Acad Sci USA 85:3815–3819.

    Google Scholar 

  • Kobza J, Seemann JR (1989a) Plant Physiol 89:918–924.

    Google Scholar 

  • Kobza J, Seemann JR (1989b) Plant Physiol 89:174–179.

    Google Scholar 

  • Kramer PJ (1981) Bioscience 31:29–33.

    Google Scholar 

  • Krause GH, Laasch H, Weis E (1988) Plant Physiol Biochem 26:445–452.

    Google Scholar 

  • Kreckl W, Kexel H, Melzer E, Schmidt H-L (1989) J Biol Chem 264:10982–10986.

    Google Scholar 

  • Kuhn M, Thiel A, Bdger P (1988) Z Naturforsch 43c:413–417.

    Google Scholar 

  • Larondelle Y, Mertens E, Van Schaftingen E, Hers H-G (1989) Plant Physiol 90:827–834.

    Google Scholar 

  • Leegood RC, von Caemmerer S (1989) Planta 178:258–266.

    Google Scholar 

  • Le Gouallec J-L, Cornic G (1988) Plant Physiol Biochem 26:705–712.

    Google Scholar 

  • Lemaire C, Wollman F-A, Bennoun P (1988) Proc Natl Acad Sci USA 85:1344–1348.

    Google Scholar 

  • Liittge U (1988) Plant Cell Environ 11:445–451.

    Google Scholar 

  • MacDonald FD, Chou Q, Buchanan BB, Stitt M (1989) J Biol Chem 264:5540–5544.

    Google Scholar 

  • Manetas Y (1990) Physiol Plant 78:225–229.

    Google Scholar 

  • Manuel LJ, Moroney JV (1988) Plant Physiol 88:491–496.

    Google Scholar 

  • Marcus F, Harrsch PB (1990) Arch Biochem Biophys 279:151–157.

    Google Scholar 

  • Marcus F, Moberly L, Latshaw SP (1988) Proc Natl Acad Sci USA 85:5379–5383.

    Google Scholar 

  • Marsh JJ, Wilson KJ, Lebherz (1989) Plant Physiol 91:1393–1401.

    Google Scholar 

  • McNaughton GAL, Fewson CA, Wilkins MB, Nimmo HG (1989) Biochem J 261:349–355.

    Google Scholar 

  • Meyer CR, Rustin P, Black MK, Wedding RT (1990) Arch Biochem Biophys 278:365–372.

    Google Scholar 

  • Miller AG, Espie GS, Canvin DT (1989) Plant Physiol 90:1221–1231.

    Google Scholar 

  • Moore Bd, Edwards GE (1988) Plant Physiol 88:125–130.

    Google Scholar 

  • Moore Bd, Edwards GE (1989) Plant Sci 60:155–161.

    Google Scholar 

  • Moore Bd, Monson RK, Ku MSB, Edwards GE (1988) Plant Cell Physiol 29:999–1006.

    Google Scholar 

  • Mousseau M, Enoch HZ (1989) Plant Cell Environ 12:927–934.

    Google Scholar 

  • Munoz J, Merrett MJ (1988) Planta 175:460–464.

    Google Scholar 

  • Munoz J, Merrett MJ (1989) Planta 178:450–455.

    Google Scholar 

  • Murata T, Ikeda J-I, Takano M, Ohsugi R (1989a) Plant Cell Physiol 30:429–437.

    Google Scholar 

  • Murata T, Ohsugi R, Matsuoka M, Nakamoto H (1989b) Plant Physiol 89:316–324.

    Google Scholar 

  • Musgrave ME, Strain BR, Siedow JN (1986) Proc Natl Acad Sci USA 83:8157–8161.

    Google Scholar 

  • Nakamoto H, Young PS (1990) Plant Cell Physiol 31:1–6.

    Google Scholar 

  • Neale PJ, Melis A (1990) Plant Physiol 92:1196–1204.

    Google Scholar 

  • Nespoulous C, Peltier G, Gans P (1989) Plant Physiol Biochem 27:863–871.

    Google Scholar 

  • Neuhaus HE, Stitt M (1989) Planta 179:51–60.

    Google Scholar 

  • Neuhaus HE, Kruckeberg AL, Feil R, Stitt M (1989) Planta 178:110–122.

    Google Scholar 

  • Ngamek A, Seery TAP, Amis EJ, Grover SD (1989) Plant Physiol 91:954–960.

    Google Scholar 

  • Nielsen TH, Huber SC (1989) Physiol Plant 76:309–314.

    Google Scholar 

  • Nijs I, Impens I, Behaeghe T (1988) Photosynthetica 22:44–50.

    Google Scholar 

  • Nijs I, Impens I, Behaeghe T (1989) J Exp Bot 40:353–359.

    Google Scholar 

  • Noctor G, Mill JD (1988) Biochem Biophys Acta 935:53–60.

    Google Scholar 

  • Norby RJ, O’Neill EG (1989) New Phytol 111:491–500.

    Google Scholar 

  • Norby RJ, O’Neill EG, Luxmoore RJ (1986) Plant Physiol 82:83–89.

    Google Scholar 

  • Ohnishi J-i, Kanai R (1988) J Plant Physiol 133:119–121.

    Google Scholar 

  • Ohnishi J-i, Flugge UI, Heldt HW (1989) Plant Physiol 91:1507–1511.

    Google Scholar 

  • Osafune T, Yokota A, Sumida S, Hase E (1990) Plant Physiol 92:802–808.

    Google Scholar 

  • Osmond CB, Holtum JAM, O’Leary MH, Roeske C, Wong OC, Summons RE, Avadhani PN (1988) Planta 175:184–192.

    Google Scholar 

  • Ota K (1988) Plant Cell Physiol 29:801–806.

    Google Scholar 

  • Outlaw WH (1989) Physiol Plant 77:275–281.

    Google Scholar 

  • Outlaw WH (1990) Plant Physiol 92:528–530.

    Google Scholar 

  • Parry MAJ, Keys AJ, Foyer CH, Furbank RT, Walker DA (1988) Plant Physiol 87:558–561.

    Google Scholar 

  • Parry MAJ, Keys AJ, Gutteridge S (1989) J Exp Bot 40:317–320.

    Google Scholar 

  • Paul MJ, Cockburn W (1990) New Phytol 114:391–398.

    Google Scholar 

  • Pearman GI (1988) Greenhouse gases: evidence for atmospheric changes and anthropogenic causes In: Pearman GI (ed) Greenhouse: planning for climate changes. CSIRO, Melbourne, pp 3–21.

    Google Scholar 

  • Pettersson G, Ryde-Pettersson U (1988) Eur J Biochem 177:351–355.

    Google Scholar 

  • Pettersson G, Ryde-Pettersson U (1988a) Eur J Biochem 182:373–377.

    Google Scholar 

  • Pettersson G, Ryde-Pettersson U (1989b) Eur J Biochem 186:683–687.

    Google Scholar 

  • Podesta FE, Andreo CS (1989) Plant Physiol 90:427–433.

    Google Scholar 

  • Poorter H, Pot S, Lambers H (1988) Physiol Plant 73:553–559.

    Google Scholar 

  • Porter MA, Grodzinski B (1984) Plant Physiol 74:413–416.

    Google Scholar 

  • Portis AR (1990) Biochem Biophys Acta 1015:15–28.

    Google Scholar 

  • Preisser J, Komor E (1988) Plant Physiol 88:259–265.

    Google Scholar 

  • Price GD, Badger MR (1989a) Plant Physiol 89:37–43.

    Google Scholar 

  • Price GD, Badger MR (1989b) Plant Physiol 91:505–513.

    Google Scholar 

  • Pschorn R, Rtihle W, Wild A (1988) Z Naturforsch 43c:207–212.

    Google Scholar 

  • Quick P, Siegl G, Neuhaus E, Feil R, Stitt M (1989) Planta 177:535–546.

    Google Scholar 

  • Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW (1988) Planta 173:298–308.

    Google Scholar 

  • Reckmann U, Scheibe R, Raschke K (1990) Plant Physiol 92:246–253.

    Google Scholar 

  • Reddy VR, Baker DN, McKinion JM (1989) J Environ Qual 18:427–432.

    Google Scholar 

  • Reiskind JB, Seamon PT, Bowes G (1988) Plant Physiol 87:686–692.

    Google Scholar 

  • Reiskind JB, Berg RH, Salvucci ME, Bowes G (1989) Plant Sci 61:43–52.

    Google Scholar 

  • Robinson SP, Portis AR (1989a) Arch Biochem Biophys 268:93–99.

    Google Scholar 

  • Robinson SP, Portis AR (1989b) Plant Physiol 90:968–971.

    Google Scholar 

  • Robinson SP, Streusand VJ, Chatfield JM, Portis AR (1988) Plant Physiol 88:1008–1014.

    Google Scholar 

  • Rodriguez Andres A, Lizaro JJ, Chueca A, Hermoso R, Lopez Gorge J (1990) Physiol Plant 78:409–413.

    Google Scholar 

  • Rodriguez-Sotres R, Munoz-Clares RA (1990) Arch Biochem Biophys 276:180–190.

    Google Scholar 

  • Roeske CA, Chollet R (1989) Plant Physiol 90:330–337.

    Google Scholar 

  • Rustin P, Meyer CR, Wedding RT (1988a) J Biol Chem 263:17611–17614.

    Google Scholar 

  • Rustin P, Meyer C, Wedding R (1988b) Plant Physiol 88:153–157.

    Google Scholar 

  • Sage RF, Sharkey TD (1987) Plant Physiol 84:658–664.

    Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1988) Planta 174:407–416.

    Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Plant Physiol 89:590–596.

    Google Scholar 

  • Salvucci ME (1989) Physiol Plant 77:164–171.

    Google Scholar 

  • Samaras Y, Manetas Y (1988) Photosyn Res 18:299–305.

    Google Scholar 

  • Schoner S, Krause GH (1990) Planta 180:383–389.

    Google Scholar 

  • Schuller KA, Randall DD (1989) Plant Physiol 89:1207–1212.

    Google Scholar 

  • Schulze-Siebert D, Schultz G (1989) Plant Sci 59:167–174.

    Google Scholar 

  • Schuster G, Timberg R, Ohad I (1988) Eur J Biochem 177:403–410.

    Google Scholar 

  • Seemann JR (1989) Plant Physiol 91:379–386.

    Google Scholar 

  • Seemann JR, Kirschbaum MUF, Sharkey TD, Pearcy RW (1988) Plant Physiol 88:148–152.

    Google Scholar 

  • Seemann JR, Kobza J, Moore Bd (1990) Photosyn Res 23:119–130.

    Google Scholar 

  • Serra JL, Llama MJ, Rowell P, Stewart WDP (1989) Plant Sci 59:1–9.

    Google Scholar 

  • Servaites JC (1990) Plant Physiol 92:867–870.

    Google Scholar 

  • Servaites JC, Geiger DR, Tucci MA, Fondy BR (1989a) Plant Physiol 89:403–408.

    Google Scholar 

  • Servaites JC, Fondy BR, Li B, Geiger DR (1989b) Plant Physiol 90:1168–1174.

    Google Scholar 

  • Sharkey TD (1988) Physiol Plant 73:147–152.

    Google Scholar 

  • Sharkey TD (1988) Physiol Plant 73:147–152.

    Google Scholar 

  • Sharkey TD (1989) Philos Trans R Soc Lond B 323:435–448.

    Google Scholar 

  • Sharkey TD, Vanderveer PJ (1989) Plant Physiol 91:679–684.

    Google Scholar 

  • Sharkey TD, Vassey TL (1989) Plant Physiol 90:385–387.

    Google Scholar 

  • Sharkey TD, Berry JA, Sage RF (1988) Planta 176:415–424.

    Google Scholar 

  • Shimazaki K (1989) Plant Physiol 91:459–463.

    Google Scholar 

  • Shiraiwa Y, Bader KP, Schmidt GH (1988) Z Naturforsch 43c:709–716.

    Google Scholar 

  • Sibley MH, Anderson LE (1989) Plant Physiol 91:1620–1624.

    Google Scholar 

  • Sicher RC (1989) Plant Physiol 89:557–563.

    Google Scholar 

  • Siegl G, Stitt M (1990) Plant Sci 66:205–210.

    Google Scholar 

  • Smirnoff N, Colombe SV (1988) J Exp Bot 39:1097–1108.

    Google Scholar 

  • Smith AM, Hylton CM, Rawsthorne S (1989) Plant Physiol 89:982–985.

    Google Scholar 

  • Soulie J-M, Riviere M, Ricard J (1988) Eur J Biochem 176:111–117.

    Google Scholar 

  • Spalding MH, Jeffrey M (1989) Plant Physiol 89:133–137.

    Google Scholar 

  • Stein M, Lazaro JJ, Wolosiuk RA (1989) Eur J Biochem 185:425–431.

    Google Scholar 

  • Steingraber M, Outlaw WH, Hampp R (1988) Planta 175:204–208.

    Google Scholar 

  • Stitt M, Grosse H (1988) Plant Physiol 133:129–137.

    Google Scholar 

  • Stitt M, Schreiber U (1988) J Plant Physiol 133:263–271.

    Google Scholar 

  • Stuhlfauth T, Scheuermann R, Fock HP (1990) Plant Physiol 92:1053–1061.

    Google Scholar 

  • Sultemeyer DF, Klock G, Kreuzberg K, Fock HP (1988) Planta 176:256–260.

    Google Scholar 

  • Tarczynski MC, Outlaw WH, Arold N, Neuhoff V, Hampp R (1989) Plant Physiol 89:1088–1093.

    Google Scholar 

  • Thielmann J, Tolbert NE, Goyal A, Senger H (1990) Plant Physiol 92:622–629.

    Google Scholar 

  • Tyson RH, ap Rees T (1988) Planta 175:33–38.

    Google Scholar 

  • Tyson RH, ap Rees T (1989) Plant Sci 59:71–76.

    Google Scholar 

  • Ueno O, Samejima M, Muto S, Miyachi S (1988) Proc Natl Acad Sci USA 85:6733–6737.

    Google Scholar 

  • Usuda H (1988) Plant Physiol 88:1461–1468.

    Google Scholar 

  • Vaughn KC, Vaughan MA (1988) Physiol Plant 74:409–413.

    Google Scholar 

  • Veau EJ de, Burris JE (1989a) Plant Physiol 90:500–511.

    Google Scholar 

  • Veau EJ de, Bunis JE (1989b) Plant Physiol 91:1085–1093.

    Google Scholar 

  • Virgin I, Styring S, Andersson B (1988) FEBS Lett 233:408–412.

    Google Scholar 

  • Volk S, Feierabend J (1989) Plant Cell Environ 12:701–712.

    Google Scholar 

  • Walker JL, Huber SC (1989) Planta 177:116–120.

    Google Scholar 

  • Walker GH, Ku MSB, Edwards GE (1988) J Plant Physiol 133:144–151.

    Google Scholar 

  • Wedding RT, Rustin P, Meyer CR, Black MK (1988) Plant Physiol 88:976–979.

    Google Scholar 

  • Wedding RT, Black MK, Meyer CR (1989) Plant Physiol 90:648–652.

    Google Scholar 

  • Wedding RT, Black MK, Meyer CR (1990) Plant Physiol 92:456–461.

    Google Scholar 

  • Weger HG, Turpin DH (1989) Plant Physiol 89:409–415.

    Google Scholar 

  • Weger HG, Herzig R, Falkowski PG, Turpin DH (1989) Limnol Oceanogr 34:1153–1161.

    Google Scholar 

  • Weiner H, Bumell JN, Woodrow IE, Heldt HW, Hatch MD (1988) Plant Physiol 88:815–822.

    Google Scholar 

  • White PJ, Smith JAC (1989) Planta 179:265–274.

    Google Scholar 

  • Wilkins MB (1989) J Exp Bot 40:1315–1321.

    Google Scholar 

  • Willeford KO, Gombos Z, Gibbs M (1989) Plant Physiol 90:1084–1087.

    Google Scholar 

  • Willeford KO, Wu M-X, Meyer CR, Wedding RT (1990) Biochem Biophys Res Commun 168:778–785.

    Google Scholar 

  • Williams WE, Garbutt K, Bazzaz FA (1988) J Exp Bot 28:123–130.

    Google Scholar 

  • Winter K, Awender G (1989) Plant Physiol 90:948–954.

    Google Scholar 

  • Winter K, Koniger M (1989) Planta 180:24–31.

    Google Scholar 

  • Wolosiuk RA, Stein M (1990) Arch Biochem Biophys 279:70–77.

    Google Scholar 

  • Wong S-C (1990) Photosyn Res 23:171–180.

    Google Scholar 

  • Woodrow IE, Berry JA (1988) Annu Rev Plant Physiol 39:533–594.

    Google Scholar 

  • Yelle S, Beeson RC, Trudel MJ, Gosselin A (1989a) Plant Physiol 90:1473–1477.

    Google Scholar 

  • Yelle S, Beeson RC, Trudel MJ, Gosselin A (1989b) Plant Physiol 90: 1465–1472.

    Article  PubMed  CAS  Google Scholar 

  • Yokota A, Kitaoka S (1989) Plant Cell Physiol 30: 183–191.

    CAS  Google Scholar 

  • Yu J, Woo KC (1988) Plant Physiol 88: 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  • Zelitch I (1990) Plant Physiol 92: 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler-Jöns A (1989) Planta 178: 164–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelly, G.J., Latzko, E. (1991). Photosynthesis. Carbon Metabolism: On Regulation at the Cellular Level and at the Whole Plant Level, and Some Considerations Concerning the Interactions of These Regulatory Events with the Increasing Level of Atmospheric C02 . In: Behnke, HD., Esser, K., Kubitzki, K., Runge, M., Ziegler, H. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76293-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76293-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76295-6

  • Online ISBN: 978-3-642-76293-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics