Molecular Genetics of Phytopathogenic Fungi

  • Friedhelm Meinhardt
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 52)


In general, plant pathogenic organisms address two major problems when invading any particular plant: (1) they have to penetrate the protective plant surface, and (2) after having invaded the plant a decision must be made whether this attack is a compatible one leading eventually to the establishment of the pathogenic interaction. In phytopathogenic fungi different strategies to overcome the plants’ protection and defence have evolved. These include the development of special infection structures and enzymes to break through the epidermis of a potential host plant, and the generation of toxins, enzymes, and hormones instrumental in triggering the decision whether the attack will be compatible or incompatible.


Phytopathogenic Fungus Fusarium Solani Papaya Fruit Cryphonectria Parasitica Potential Host Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cooley RN, Shaw RK, Franklin FCH, Caten CE (1988) Curr Genet 13: 383–389.CrossRefGoogle Scholar
  2. Churchill ACL, Ciufetti LM, Hansen DR, VanEtten HD, VanAlfen NK (1990) Curr Genet 17: 25–31.CrossRefGoogle Scholar
  3. Dickman MR (1988) Curr Genet 14: 241–246.CrossRefGoogle Scholar
  4. Dickman MB, Patil SS, Kolattukudy PE (1982) Physiol Plant Pathol 20: 333–347.CrossRefGoogle Scholar
  5. Dickman MB, Podila GK, Kolattukudy PE (1989) Nature 342: 446–448.CrossRefGoogle Scholar
  6. Esser K, Mohr G (1986) Proc Biochem 21: 153–159.Google Scholar
  7. Farman ML, Oliver RP (1987) Curr Genet 13: 327–330.CrossRefGoogle Scholar
  8. Fincham FRS (1989) Microbiol Rev 53: 148–170.PubMedGoogle Scholar
  9. Henson JM, Blake NK, Pilgram AL (1988) Curr Genet 14: 113–117.CrossRefGoogle Scholar
  10. Holden DW, Wang J, Leong SA (1988) Physiol Mol Plant Pathol 33: 235–239.CrossRefGoogle Scholar
  11. Holliday R (1974) Ustilago maydis. In: King RC (ed) Handbook of genetics, Vol 1. Plenum Press, New York, pp 575–595.Google Scholar
  12. Huang D, Bhairi S, Staples RC (1989) Curr Genet 15:411–414.Google Scholar
  13. Hynes MJ (1986) Exp Mycol 10:1–8.Google Scholar
  14. Kistler HC, Benny UK (1988) Curr Genet 13:145–149.Google Scholar
  15. Kolattukudy PE (1980) Science 208:990–1000.Google Scholar
  16. Kolattukudy PE (1981) Annu Rev Plant Physiol 32:539–567.Google Scholar
  17. Koller W, Kolattukudy PE (1982) Biochem 21:3083–3090.Google Scholar
  18. Koller W, Allan CR, Kolattukudy PE (1982) Physiol Plant Pathol 20:47–60.Google Scholar
  19. Kronstad JW, Leong SA (1989) Proc Nad Acad Sci USA 86:978–982.Google Scholar
  20. Kronstad JW, Wang J, Covert SF, Holden DW, McKnight GL, Leong SA (1989) Gene 79:97–106.Google Scholar
  21. Leong SA, Holden DW (1989) Annu Rev Phytopathol 27:463–481.Google Scholar
  22. Matthews DE, VanEtten HD (1983) Arch Biochem Biophys 224:494–505.Google Scholar
  23. Meinhardt F, Kempken F, Kamper J, Esser K (1990) Curr Genet 17:89–95.Google Scholar
  24. Oliver RP, Roberts IN; Harling R, Kenyon L, Punt PJ, Dingemanse MA, VandenHondel CAMJJ (1987) Curr Genet 12:231–233.Google Scholar
  25. Orbach MJ, Porro EB, Yanofsky C (1986) Mol Cell Biol 6:2452–2461.Google Scholar
  26. Panaccione DG, McKiernan M, Hanau RM (1988) Mol Plant-Microbe Interactions 1:113–120.Google Scholar
  27. Parsons HA, Chumley FG, Valent B (1987) Proc Nad Acad Sci USA a84:4161–4165.Google Scholar
  28. Puhalla JE (1970) Genet Res Cambridge 16:229–232.Google Scholar
  29. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, VandenHondel CAMJJ (1987) Gene 56:117–124.Google Scholar
  30. Purdy RE, Kolattukudy PE (1975) Biochemistry 14:2832–2840.Google Scholar
  31. Roberts IN, Oliver RP, Punt PJ, VandenHondel CAMJJ (1989) Curr Genet 15:177–180.Google Scholar
  32. Rodriguez RJ, Yoder OC (1987) Gene 54:73–81.Google Scholar
  33. Rowell JB (1955) Phytopathology 45:370–374.Google Scholar
  34. Rowell JB, DeVay JE (1954) Phytopathology 44:356–362.Google Scholar
  35. Salch Y, Beremand MN (1988) J Cell Biochem 12:290.Google Scholar
  36. Schafer W, Straney D, Ciufetti L, VanEtten HD, Yoder OC (1989) Science 246:247–249.Google Scholar
  37. Schulz B, Bannett F, Dahl M, Schlesinger R, Schafer W, Herskowitz I, Kahmann R (1990) Cell 60:295–306.Google Scholar
  38. Soliday CL, Dickman MB, Kolattukudy PE (1989) J Bacteriol 171:1942–1951.Google Scholar
  39. Turgeon BG, Garber RC, Yoder DC (1985) Mol Gen Genet 201:450–453.Google Scholar
  40. Tsukuda T, Carleton S, Fotheringham S, Holloman WK (1988) Mol Cell Biol 8:3703–3709.Google Scholar
  41. Van Engelenburg F, Smit R, Goosen T, VandenBroek H, Tudzynski P (1989) Appl Microbiol Biotechnol 30:364–370.Google Scholar
  42. VanEtten HD, Barz W (1981) Arch Microbiol 129: 56–60.CrossRefGoogle Scholar
  43. VanEtten HD, Matthews PS, Tegtmeier KG, Dietert MF, Stein JI (1980) Physiol Plant Pathol 16: 257–268.CrossRefGoogle Scholar
  44. Wang J, Holden DW, Leong SA (1988) Proc Nad Acad Sci USA 85: 865–869.CrossRefGoogle Scholar
  45. Weltring KM, Turgeon BG, Yoder OC, VanEtten HD (1988) Gene 68: 335–344.PubMedCrossRefGoogle Scholar
  46. Woloshuk CP, Kolattukudy PE (1986) Proc Nad Acad Sci USA 83: 1704–1704.CrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Friedhelm Meinhardt
    • 1
  1. 1.Institut für MikrobiologieWestfälische-Wilhelms-UniversitätMünsterGermany

Personalised recommendations