Skip to main content

Recombination: Recombination of Transforming DNA in Fungi

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 52))

  • 107 Accesses

Abstract

Recombination of DNA segments leading to new linkage relationships between genes or parts of genes is one of the fundamentals of life. Apart from the general consequences for natural evolution (Anderson and Roth 1977; Evans 1986; Ajioka and Hard 1989), it is of special interest in the pathogenicity of organisms and infectious diseases (Barbour 1989; Donelson 1989; Swanson and Kooney 1989) and, in addition, it influences the stability of production strains in biotechnology (Ehrlich et al. 1986; Cullum et al. 1989; Schrempf et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn BY, Dornfeld K, Fagrelius TJ, Livingstone DM (1988) Mol Cell Biol 8: 2442–2448.

    PubMed  CAS  Google Scholar 

  • Ajioka JW, Hard DL (1989) Population dynamics of transposable elements. In: Berg DE, Howe M (eds) Mobile DNA. ASM, Washington DC, pp 939–958.

    Google Scholar 

  • Akins RA, Lambowitz AM (1985) Mol Cell Biol 5: 2272–2278.

    PubMed  CAS  Google Scholar 

  • Alani E, Cao L, Kleckner N (1987) Genetics 116: 541–545.

    PubMed  CAS  Google Scholar 

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) Cell 29: 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Allgood ND, Silhayy TJ (1988) Illegitimate recombination in bacteria. In: Kucherlapati R, Smith GR (eds) Genetic recombination. ASM, Washington DC, pp 309–330.

    Google Scholar 

  • Anderson P (1987) Genetics 115: 581–584.

    PubMed  CAS  Google Scholar 

  • Anderson RP, Roth JR (1977) Ann Rev Microbiol 31: 473–505.

    Article  CAS  Google Scholar 

  • Arakl H, Jearnpipatkul A, Tatsumi H et al. (1985) J Mol Biol 182: 191–203.

    Article  Google Scholar 

  • Ballance DJ, Turner G (1985) Gene 36: 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Banks GR, Taylor SY (1988) Mol Cell Biol 8:5417–5424.

    Google Scholar 

  • Barbour A (1989) Antigenic variation in relapsing fever induding Borrelia species: genetic aspects. In: Berg DE, Howe M (eds) Mobile DNA. ASM, Washington DC, pp 783–790.

    Google Scholar 

  • Barnes DE, Mac Donald DW (1986) Curr Genet 10:767–776.

    Google Scholar 

  • Bashkirov VI, Khasanov FK, Prozorov AA (1987) Mol Gen Genet 210:578–580.

    Google Scholar 

  • Beggs JD (1978) Nature (Lond) 275:104–109.

    Google Scholar 

  • Beri RK, Turner G (1987) Curr Genet 11:639–641.

    Google Scholar 

  • Beri RK, Lewis EL, Turner G (1988) Curr Genet 13:479–486.

    Google Scholar 

  • Blanch! MM, Frontali L, Fukuhara H (1989) Curr Genet 15:253–260.

    Google Scholar 

  • Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) Embo J 6:835–840.

    Google Scholar 

  • Bull JH, Smith DJ, Turner G (1988) Curr Genet 13:377–382.

    Google Scholar 

  • Burmester A, Wostemeyer A, Wostemeyer J (1990) Curr Genet 17:155–161.

    Google Scholar 

  • Buxton FB, Radford A (1984) Mol Gen Genet 196:339–344.

    Google Scholar 

  • Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Science 244:1571–1575.

    Google Scholar 

  • Cantoral JM, Diez B, Barredo JL, Alvarez E, Martin JF (1987) Bio Technology 5:494–497.

    Google Scholar 

  • Capecchi MR (1989) Science 244:1288–1292.

    Google Scholar 

  • Case ME (1986) Genetics 113:569–587.

    Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH (1979) Proc Natl Acad Sci USA 76:5259–5263.

    Google Scholar 

  • Casselton LA, De La Fuente Herce A (1989) Curr Genet 16:35–40.

    Google Scholar 

  • Champoux JJ, Bullock PA (1988) Possible role for the eucaryotic Type I Topoisomerase in illegitimate recombination. In: Kucherlapati R, Smith GR (eds) Genetic recombination. ASM, Washington DC, pp 655–666.

    Google Scholar 

  • Chrlstensen T, Woeldicke H, Boel E et al. (1988) Bio Technology 6:1419–1422.

    Google Scholar 

  • Cooley RN, Shaw RK, Franklin FCH, Caten CE (1988) Curr Genet 13:383–389.

    Google Scholar 

  • Coppin-Raynal E, Picard M, Arnaise S (1989) Mol Gen Genet 219:270–276.

    Google Scholar 

  • Cox MM (1989) DNA inversion in the 2 im plasmid of Saccharomyces cerevisiae. In: Berg DE, Howe M (eds) Mobile DNA. ASM, Washington DC, pp 661–670.

    Google Scholar 

  • Cox MM, Lehman IR (1987) Ann Rev Biochem 56:229–262.

    Google Scholar 

  • Craig NL (1988) Ann Rev Genet 22:77–106.

    Google Scholar 

  • Cregg JM, Madden KR (1989) Mol Gen Genet 219:320–323.

    Google Scholar 

  • Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Mol Cell Biol 5:3376–3385.

    Google Scholar 

  • Culfen D, Gray GL, Wilson U et al. (1987) Bio Technology 5:369–376.

    Google Scholar 

  • Cullum J, Flett F, Piendl W (1989) Genetic instability, deletions, and DNA amplification in Streptomyces species. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. ASM, Washington DC, pp 127–132.

    Google Scholar 

  • Daboussi MJ, Djeballi A, Gerlinger C et al. (1989) Curr Genet 15:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Davidow LS, Apostolakos D, O’Donnell MM et al. (1985) Curr Genet 10:39–48.

    Article  CAS  Google Scholar 

  • Debuchy R, Coppin-Raynal E, Le Coze D, Brygoo Y (1988) Curr Genet 13:105–111.

    Google Scholar 

  • De Graaff L, Van den Broek H, Visser J (1988) Curr Genet 13:315–321.

    Google Scholar 

  • Denis CL, Drouin EE (1987) Curr Genet 12:399–403.

    Google Scholar 

  • Dobson MJ, Futcher AB, Cox BS (1980) Curr Genet 2:201–205.

    Google Scholar 

  • Donelson JE (1989) DNA rearrangements and antigenic variation in African trypanosomes. In: Berg DE, Howe M (eds) Mobile DNA. ASM, Washington DC, pp 763–782.

    Google Scholar 

  • Dowzer CEA, Kelly JM (1989) Curr Genet 15:457–459.

    Google Scholar 

  • Dunne PW, Oakley BR (1988) Mol Gen Genet 213:339–345.

    Google Scholar 

  • Durrens P, Green PM, Arst HN, Scazzocchio C (1986) Mol Gen Genet 203:544–549.

    Google Scholar 

  • Ehrlich SD (1989) In: Berg DE, Howe M (eds) Mobile DNA. ASM, Washington DC, pp 799–832.

    Google Scholar 

  • Ehrlich SD, Noirot P, Petit MA, Janniere L, Michel B, Te Riele H (1986) Structural instability of Bacillus subtilis plasmids. In: Sedow JK, Hollaender A (eds) Genetic engineering, Vol. 8. Plenum, New York, pp 71–83.

    Google Scholar 

  • Ehrlich SD, Brunier D, Peeters B et al. (1989) Illegitimate recombination in bacteria. In: Buder LO, Harwood C, Moseley BEB (eds) Genetic transformation and expression. Intercept Ltd, Andover, Hants, UK, pp 197–203.

    Google Scholar 

  • Erhart E, Hollenberg CP (1983) J Bacteriol 156:625–635.

    Google Scholar 

  • Esser K, Kamper J (1988) Process Biochem 23:36–42.

    Google Scholar 

  • Esser K, Mohr G (1986) Process Biochem 21:153–159.

    Google Scholar 

  • Esser K, Mohr G (1990) Bio Engineering 6:44–55.

    Google Scholar 

  • Evans R (1986) Genetics 113:775–795.

    Google Scholar 

  • Falcone C, Saliola M, Chen XJ, Frontali L, Fukuhara H (1986) Plasmid 15:248–252.

    Google Scholar 

  • Farman ML, Oliver RP (1988) Curr Genet 13:327–330.

    Google Scholar 

  • Faugeron G, Goyon C, Gregoire A (1989) Gene 76:109–119.

    Google Scholar 

  • Feher Z, Schabik M, Kiss A, Zsindely A, Szabo G (1986) Curr Genet 11:131–137.

    Google Scholar 

  • Fernandez-Larrea J, Stahl U (1989) Curr Genet 16:57–60.

    Google Scholar 

  • Fincham JRS (1989a) Microbiol Rev 53:148–170.

    Google Scholar 

  • Fincham JRS (1989b) Nature (Lond) 331:207–208.

    Google Scholar 

  • Fincham JRS, Connerton IF, Notarianni E, Harrington K (1989) Curr Genet 15:327–334.

    Google Scholar 

  • Franklin NC (1967) Genetics 55:699–707.

    Google Scholar 

  • Franklin NC (1971) In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Lab, Cold Spring Harbor New York, pp 175–194.

    Google Scholar 

  • Fraser MJ, Koa H, Chow TY-K (1990) J Bacteriol 172:507–510.

    Google Scholar 

  • Frederick GD, Asch DK, Kinsey JA (1989) Mol Gen Genet 217:294–300.

    Google Scholar 

  • Friedmann T (1989) Science 244:1275–1281.

    Google Scholar 

  • Futcher AB (1986) J Theor Biol 119:197–204.

    Google Scholar 

  • Futcher AB (1988) Yeast 4:27–40.

    Google Scholar 

  • Futcher AB, Cox BS, (1983) J Bacteriol 154:612–622.

    Google Scholar 

  • Futcher AB, Cox BS (1984) J Bacteriol 157:283–290.

    Google Scholar 

  • Gaillardin C, Ribet AM, Heslot H (1985) Curr Genet 10:49–58.

    Google Scholar 

  • Gasser CS, Fraley RT (1989) Science 244:1293–1299.

    Google Scholar 

  • Geisen R, Leistner L (1989) Curr Genet 15:307–308.

    Google Scholar 

  • Gellert M, Nash H (1987) Nature (Lond) 325:401–404.

    Google Scholar 

  • Glasgow AC, Hughes KT, Simon MI (1989) Bacterial DNA inversion systems. In: Berg DE, Howe M (eds) Mobile DNA. ASM Washington DC, pp 637–660.

    Google Scholar 

  • Gmunder H, Kohli J (1989) Mol Gen Genet 220:95–101.

    Google Scholar 

  • Goebl MG, Petes TD (1986) Cell 46:983–992.

    Google Scholar 

  • Golic KG Lindquist S (1989) Cell 59:499–509.

    Google Scholar 

  • Goosen T, Bloemheuvel G, Gysler C, De Bie DA, Van Den Broek HWJ, Swart K (1987) Curr Genet 11:499–503.

    Google Scholar 

  • Goyon C, Faugeron G (1989) Mol Cell Biol 9:2818–2827.

    Google Scholar 

  • Grant DM, Lambowitz AM, Rambosek JA, Kinsey JA (1984) Mol Cell Biol 4:2041–2051.

    Google Scholar 

  • Grayburn WS, Selker EU (1989) Mol Cell Biol 9:4416–4421.

    Google Scholar 

  • Gregg JM, Digan ME, Tscopp JF et al. (1989) Expression of foreign genes in Pichia pastor is. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. ASM, Washington DC, pp 343–352.

    Google Scholar 

  • Grimm C, Kohli J (1988) Mol Gen Genet 215:87–93.

    Google Scholar 

  • Grimm C, Kohli J, Murray J, Maundrell K (1988) Mol Gen Genet 215:81–86.

    Google Scholar 

  • Gurr SJ, Hawkins AR, Dramas C, Kinghorn JR (1986) Curr Genet 10:761–766.

    Google Scholar 

  • Gwynne DI, Buxton FP, Williams SA, Garven S, Davies RW (1987) Bio Technology 5:713–719.

    Google Scholar 

  • Halbrook J, Mc Entee K (1989) J Biol Chem 264:21403–21412.

    Google Scholar 

  • Harashima S, Shimada Y, Nakade S, Oshima Y (1989) Mol Gen Genet 219:495–498.

    Google Scholar 

  • Harkki A, Uusitalo J, Bailey M, Penttila M, Knowels JKC (1989) Bio Technology 7:597–603.

    Google Scholar 

  • Hastings PJ (1988) Conversion elements in Fungi. In: Kucherlapati R, Smith GR (eds) Genetic recombination. ASM, Washington DC, pp 397–428.

    Google Scholar 

  • Henson JM, Blake NK, Pilgeram AL (1988) Curr Genet 14:113–117.

    Google Scholar 

  • Hinchliffe E, Vakeria D (1989) Genetic manipulation of brewing yeast In: Walton EF, Yarraton GT (eds) Molecular and cell biology of yeasts. Hinchliffe E, Fleming CJ, Vakeria D (1987) Proc Eur Brew Con 21st Congr Madrid, p 505.

    Google Scholar 

  • Van Nostrand Reinhold, New York, pp 280–303.

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Nad Acad Sci USA 75:1929–1933.

    Google Scholar 

  • Hohmann S (1987) Curr Genet 12:519–526.

    Google Scholar 

  • Ilmura Y, Gomi K, Uzu H, Hara S (1987) Agric Biol Chem 51:323–328.

    Google Scholar 

  • Ikeda H (1986) Proc Nad Acad Sci USA 83:922–926.

    Google Scholar 

  • Jensch F, Kosak H, Seeman NC, Kemper B (1989) EMBO J 8:4325–4334.

    Google Scholar 

  • Johnstone IL (1985) Microbiol Sci 2:307–311.

    Google Scholar 

  • Johnstone IL, Hughes SG, Clutterbuck AJ (1985) EMBO J 4:1307–1311.

    Google Scholar 

  • Kanaar R, Van de Putte (1987) BioEssays 7:195–200.

    Google Scholar 

  • Kearsey SE, Edwards J (1987) Mol Gen Genet 210:509–517.

    Google Scholar 

  • Kelly JM, Hynes MJ (1987) Curr Genet 12:21–31.

    Google Scholar 

  • Kelly R, Miller SM, Kurtz MB, Kirsch DR (1987) Mol Cell Biol 7:199–208.

    Google Scholar 

  • Kelly R, Miller SM, Kurtz MB (1988) Mol Gen Genet 214:24–31.

    Google Scholar 

  • Kim SY, Marzluf GA (1988) Curr Genet 13:65–70.

    Google Scholar 

  • Kingsman AJ, Gimlich RL, Clarke L, Chinault AC, Carbon J (1981) J Mol Biol 145:619–632.

    Google Scholar 

  • Kinsey JA, Rambosek JA (1984) Mol Cell Biol 4:117–122.

    Google Scholar 

  • Klar A, Strathem JN (1986) Mechanism of yeast recombination. Cold Spring Harbour Lab, New York. Kmiec E, Holloman W (1982) Cell 29:367–374.

    Google Scholar 

  • Komopka AK (1988) Nucl Acids Res 16:1793–1758.

    Google Scholar 

  • Kowalczykowski SC (1987) TIBS 12:141–145.

    Google Scholar 

  • Kronstad JW, Wang J, Covert SF, Holden DW, Mc Knight GL, Leong SA (1989) Gene 79:97–106.

    Google Scholar 

  • Kuiper MTR, De Vries H (1985) Curr Genet 9:471–477.

    Google Scholar 

  • Kunkel TA (1985) J Biol Chem 260:5787–5796.

    Google Scholar 

  • Kurtz MB, Marrinan J (1989) Mol Gen Genet 217:47–52.

    Google Scholar 

  • Kurtz MB, Cortelyou MW, Miller SM, Kirsch DR (1987) Mol Cell Biol 7:209–217.

    Google Scholar 

  • Landy A (1989) Ann Rev Biochem 58:913–949.

    Google Scholar 

  • Leong SA, Holden DW (1989) Ann Rev Phytopathol 27:463–481.

    Google Scholar 

  • Liljestrom-Suominen PL, Joutskoji V, Korhola M (1988) Appl Environ Microbiol 54:245–249.

    Google Scholar 

  • Magill JM, Magill CW (1989) Dev Genet 10:63–69.

    Google Scholar 

  • Mahajan SK (1988) Pathways of homologous recombination in Escherichia coli. In: Kucherlapati R, Smith GR (eds) Genetic recombination. ASM, Washington DC, pp 87–140.

    Google Scholar 

  • Maine GT, Sinha P, Tye B-K (1984) Genetics 106:365–385.

    Google Scholar 

  • Marek ET, Schardl CL, Smith DA (1989) Curr Genet 15:421–428.

    Google Scholar 

  • Matsuzaki H, Araki H, Oshima Y (1988) Mol Cell Biol 8:955–962.

    Google Scholar 

  • Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y (1990) J Bacteriol 172:610–618.

    Google Scholar 

  • Mattern IE, Unkles S, Kinghorn JR, Pouwels PH, Van den Hondel CAMJJ (1987) Mol Gen Genet 210:460–461.

    Google Scholar 

  • Meacock PA, Brieden KW, Chashmore AM (1989) The 2 micron cycle, model. In: Walton EF, Yarranton GT (eds) Molecular and cell biology of yeasts. Van Nostrand Reinhold, New York pp 330–359.

    Google Scholar 

  • Mead DJ, Gardner DCJ, Oliver SG (1986) Biotechnol Lett 8:391–396.

    Google Scholar 

  • Mellon FM, Casselton LA (1988) Curr Genet 14:451–456.

    Google Scholar 

  • Meyhack B, Hinnen A, Heim J (1989) Heterologous gene expression in Saccharomyces cerevisiae. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. ASM, Washington DC, pp 311–320.

    Google Scholar 

  • Michel B, Ehrlich SD (1984) EMBO J 3:2879–2884.

    Google Scholar 

  • Miller BL, Miller KY, Timberlake WE (1985) Mol Cell Biol 5:1714–1721.

    Google Scholar 

  • Miura-Masuda A, Ikeda H (1990) Mol Gen Genet 220:345–352.

    Google Scholar 

  • Mohr G (1989) Diss Bot 131: Cramer, Berlin. Mohr G (1990) BioEngeneering (in press).

    Google Scholar 

  • Munoz-Rivaz A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC (1986) Mol Gen Genet 205:103–106.

    Google Scholar 

  • Murray JAH (1987) Mol Microbiol 1:1–4.

    Google Scholar 

  • Murray AW, Szostak JW (1983) Cell 34:961–970.

    Google Scholar 

  • Nash HA (1981) Ann Rev Genet 15:143–167.

    Google Scholar 

  • Oakley BR, Ronehart JE, Mitchell BL et al. (1987) Gene 61:385–399.

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Danhash N, Gardner DC J (1989) Plasmid transformation and maintenance in yeast. In: Butler LO, Harwood C, Moseley BEB (eds) Genetic transformation and expression. Intercept Ltd, Andover Hants, UK, pp 133–150.

    Google Scholar 

  • Orbach MHJ, Schneider WP, Yanofsky C (1988) Mol Cell Biol 8:2211–2213.

    Google Scholar 

  • Orr- Weaver TL, Szostak JW (1983a) Proc Nad Acad Sci USA 80:4417–4421.

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983b) Mol Cell Biol 3:747–749.

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1985) Microbiol Rev 49:33–58.

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Nad Acad Sci 78:6354–6358.

    Google Scholar 

  • Osiewacz HD (1986) Prog Bot 48:224–240.

    Google Scholar 

  • Paietta JV, Marzluf GA (1985a) Curr Genet 9:383–388.

    Google Scholar 

  • Paietta JV, Marzluf GA (1985b) Mol Cell Biol 5:1554–1559.

    Google Scholar 

  • Panchal CJ, Bast L, Dowhanick T, Stewart GG (1987) Curr Genet 12:15–20.

    Google Scholar 

  • Parent SA, Fenimore CM, Bostian KA (1985) Yeast 1:83–138.

    Google Scholar 

  • Parker R, Simmons T, Schuster EO, Siliciano PE, Guthries C (1988) Mol Cell Biol 8:3150–3159.

    Google Scholar 

  • Parsons KA, Chumley FG, Valent B (1987) Proc Nad Acad Sci USA 84:4161–4165.

    Google Scholar 

  • Perrot M, Barreau C, Begueret J (1987) Mol Cell Biol 7:1725–1730.

    Google Scholar 

  • Picard M, Debuchy R, Julien J, Brygoo Y (1987) Mol Gen Genet 210:129–134.

    Google Scholar 

  • Picknett TM, Saunders G, Ford P, Holt G (1987) Curr Genet 12:449–455.

    Google Scholar 

  • Plasterk RHA, Van de Putte P (1984) BBA 782:111–119.

    Google Scholar 

  • Pursel VG, Pinkert CA, Miller KF et al. (1989) Science 244:1281–1288.

    Article  PubMed  CAS  Google Scholar 

  • Radding CM (1988) Homologous pairing and strand exchange promoted by Escherichia coli Rec A protein. In: Kucherlapati R, Smith GR (eds) Genetic recombination. ASM, Washington DC, pp 193–230.

    Google Scholar 

  • Razanamparany V, Begueret J (1986) Curr Genet 10:811–817.

    Google Scholar 

  • Razanamparany V, Begueret J (1988) Gene 74:399–409.

    Google Scholar 

  • Reynolds AE, Murray AW, Szostak JW (1987) Mol Cell Biol 7:3566–3573.

    Google Scholar 

  • Roman H (1985) Environ Mutagen 7:923–932.

    Google Scholar 

  • Rossier C, Pugin A, Turian G (1985) Curr Genet 10:313–320.

    Google Scholar 

  • Rossignol J-L, Nicolas A, Hamza H, Kalogeropoulos A (1988) Gene conversion in Ascobolus. In: Brooks Low K (ed) The recombination of genetic material. Academic Press, Lond New York, pp 23–72.

    Google Scholar 

  • Roth D, Wilson J (1988) Illegitimate recombination in mammalian cells. In: Kucherlapati R, Smith GR (eds) Genetic recombination. ASM, Washington DC, pp 621–654.

    Google Scholar 

  • Rothstein RJ (1983) Meth Enzymol 101:202–211.

    Google Scholar 

  • Rudolph H, Koenig-Rauseo I, Hinnen A (1985) Gene 36:87–95.

    Google Scholar 

  • Sadowski P (1986) J Bacteriol 165:341–347.

    Google Scholar 

  • Sakaguchi J, Yamamoto M (1982) Proc Nad Acad Sci USA 79:7819–7832.

    Google Scholar 

  • Sakai K, Sakaguchi J, Yamamoto M (1984) Mol Cell Biol 4:651–656.

    Google Scholar 

  • Sanchez F, Lozano M, Rubio V, Penalva MA (1987) Gene 51:97–102.

    Google Scholar 

  • Sauer B (1987) Mol Cell Biol 7:2087–2096.

    Google Scholar 

  • Sauer B, Henderson N (1988) Proc Nad Acad Sci USA 85:5166–5170.

    Google Scholar 

  • Scherer S, Davis RW (1979) Proc Nad. Acad Sci USA 76:4951–4955.

    Google Scholar 

  • Schrempf H, Kessler A, Bronnecke V, Dittrich W, Betzler M (1989) Genetic instability in Streptomyces. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. ASM, Washington DC, pp 133–140.

    Google Scholar 

  • Selker EU, Garrett PW (1988) Proc Nad Acad Sci USA 85:6870–6874.

    Google Scholar 

  • Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Cell 51:741–752.

    Google Scholar 

  • Shortle D, Haber JE, Botstein D (1982) Science 217:371–373.

    Google Scholar 

  • Sinha P, Chaq V, Tye B-D (1986) J Mol Biol 192:805–814.

    Google Scholar 

  • Skatrud PL, Fisher DC, Ingolia TD, Queener SW (1986) Proc 5th Int Symp Gen Ind Microorg, Zagreb, Yugoslawia, pp 111–119.

    Google Scholar 

  • Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Curr Genet 12:337–348.

    Google Scholar 

  • Smith DJ, Bull JH, Turner G (1989) Mol Gen Genet 216:492–497.

    Google Scholar 

  • Smith GR (1987) Ann Rev Genet 21:179–201.

    Google Scholar 

  • Smith GR (1988) Microbiol Rev 52:1–28.

    Google Scholar 

  • Smith GR (1989) Cell 58:807–809.

    Google Scholar 

  • Smolik-Utlaut S, Petes TD (1983) Mol Cell Biol 3:1204–1211.

    Google Scholar 

  • Spalding A, Tuite M (1989) J Gen Microbiol 135:1037–1045.

    Google Scholar 

  • Stahl U, Leitner E, Esser K (1987) Appl Microbiol Biotechnol 26:237–241.

    Google Scholar 

  • Stohl LL, Lambowitz AM (1983) Proc Natl Acad Sci USA 80:1058–1062.

    Google Scholar 

  • Struhl K (1983a) Nature (Lond) 305:391–397.

    Google Scholar 

  • Struhl K (1983b) Gene 26:231–241.

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RD (1979) Proc Natl Acad Sci USA 76:1035–1039.

    Google Scholar 

  • Suderby PE, Gleeson MAG (1989) Genetic manipulation of methylotrophic yeasts. In: Walton EF, Yarraton GT (eds) Molecular and cellbiology of yeasts. Van Nostrand Reinhold, New York, pp 304–329.

    Google Scholar 

  • Swanson J, Kooney JM (1989) Mechanisms for variation of Pili and outer membrane protein II in Neisseria gonorrhoeae. In: Berg DE, Howe M (eds) Mobile DNA. ASM, Washington DC, pp 743–762.

    Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) Cell 33:25–35.

    Google Scholar 

  • Thaler DS, Stahl FW (1988) Ann Rev Genet 22:169–197.

    Google Scholar 

  • Thomas MD, Kenerly CM (1989) Curr Genet 15:415–420.

    Google Scholar 

  • Tikhomirova LP, Ikonomova RN, Kuznetsova EN (1986) Curr Genet 10:741–747.

    Google Scholar 

  • Tilburn J, Scazzochio C, Taylor GG, Labicky-Zissman JH, Lockington RA, Davis RW (1983) Gene 26:205–221.

    Google Scholar 

  • Timberlake WE, Marshall MA (1989) Science 244:1313–1317.

    Google Scholar 

  • Trash-Bingham C, Fangman WL (1989) Mol Cell Biol 9:809–816.

    Google Scholar 

  • Tsukuda T, Carleton S, Fotheringham S, Holloman WK (1988) Mol Cell Biol 8:3703–3709.

    Google Scholar 

  • Turcq B, Begueret J (1987) Gene 53:201–209.

    Google Scholar 

  • Turnbull IF, Rand K, Willetts NS, Hynes MJ (1989) Bio Technology 7:169–174.

    Google Scholar 

  • Unkles SE, Campbell EI, De Ruiter-Jacobs YMJT et al. (1989) Mol Gen Genet 218:99–104.

    Article  CAS  Google Scholar 

  • Upsha U A (1986) Curr Genet 10:593–599.

    Google Scholar 

  • Upshall A, Kumar AA, Bailey MC et al. (1987) Bio Technology 5:1301–1305.

    CAS  Google Scholar 

  • Van Gorcom RFM, Pouwels PH, Goosen T et al. (1985) Gene 40:99–106.

    Article  PubMed  Google Scholar 

  • Van Hartingsveldt W, Mattern IE, Van Zeijl CMJ, Pouwels PH, Van den Hondel CAMJJ (1987) Mol Gen Genet 206:71–75.

    Google Scholar 

  • Van Heeswyck R (1986) Carlsberg Res Commun 51:433–443.

    Google Scholar 

  • Volkert FC, Broach JR (1986) Cell 46:541–550.

    Google Scholar 

  • Volkert FC, Wilson DW, Broach JR (1989) Microbiol Rev 53:299–317.

    Google Scholar 

  • Wallis JW, Chrebet G, Brodsky G, Rolfe M, Rothstein R (1985) Cell 58:409–119.

    Google Scholar 

  • Walmsley RM, Gardner DCJ, Oliver SG (1983) Mol Gen Genet 192:361–365.

    Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Proc Natl Acad Sci USA 85:865–869.

    Google Scholar 

  • Ward M, Wilson LJ, Carmona CL, Turner G (1988) Curr Genet 14:37–42.

    Google Scholar 

  • Watt VM, Ingles CJ, Urdea MS, Rutter WJ (1985) Proc Natl Acad Sci USA 82:4768–4772.

    Google Scholar 

  • Werners K, Goosen T, Wennekes LMJ et al. (1985) Genet 9:361–368.

    Google Scholar 

  • Werners K, Goosen T, Wennekes BMJ, Swart K, Van den Hondel CAMJJ, Van den Broek HWJ (1987) Mol Gen Genet 209:71–77.

    Google Scholar 

  • West SC (1988) TIG 4:8–13.

    Google Scholar 

  • Weston-Hafer K, Berg DE (1989) Plasmid 21:251–253.

    Google Scholar 

  • Williamson DH (1985) Yeast 1:1–14.

    Google Scholar 

  • Wnendt W, Jacobs M, Stahl U (1990) Curr Genet 17:21–14.

    Google Scholar 

  • Wöstemeyer J, Burmester A, Weigel C (1987) Curr Genet 12: 625–627.

    Article  PubMed  Google Scholar 

  • Wright APH, Maundrell K, Shall S (1986) Curr Genet 10: 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Rank GH (1989) Gene 76: 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Proc Nad Acad Sci USA 81: 1470–1474.

    Article  CAS  Google Scholar 

  • Zakian VA, Brewer BJ, Fangman WL (1979) Cell 17: 923–934.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kües, U., Stahl, U. (1991). Recombination: Recombination of Transforming DNA in Fungi. In: Behnke, HD., Esser, K., Kubitzki, K., Runge, M., Ziegler, H. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76293-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76293-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76295-6

  • Online ISBN: 978-3-642-76293-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics