Das dopaminerg-glutamaterge Gleichgewicht unter dem Aspekt von schizophrener Plus- und Minussymptomatik

  • J. Kornhuber
  • H. Beckmann
  • P. Riederer

Zusammenfassung

Es ist inzwischen gut belegt, daß die Dopamin-D2-Rezeptoren in Postmortem-Gehirnen von schizophrenen Patienten erhöht sind (vgl. Seeman 1987; Kornhuber et al. 1989 c; Reynolds 1989). Diese Erhöhung scheint auch mit der Psychopathologie der Patienten vor dem Tode zu korrelieren: Die Bmax-Werte bei Patienten mit produktiv-psychotischen Symptomen sind höher als bei solchen mit Negativsymptomen (Crow et al. 1981; Mita et al. 1986). Es ist jedoch umstritten, ob diese Veränderung tatsächlich mit der Erkrankung zusammenhängt oder eine Folge der chronischen neuroleptischen Therapie der Patienten darstellt. Aus tierexperimentellen Studien ist bekannt, daß chronische Neuroleptika-Applikation die Bmax-Werte der D2-Rezeptoren erhöht (Greenshaw et al. 1989). Um diese Frage weiter zu klären, haben wir den Zeitverlauf der D2-Rezeptorparameter nach Absetzen einer chronischen neuroleptischen Therapie im Postmortem-Hirngewebe von schizophrenen Patienten untersucht (Kornhuber et al. 1989 c). Weiterhin haben wir die Beziehung zwischen den Bindungsparametern der D2-Rezeptoren und sowohl der Psychopathologie vor dem Tod als auch dem Vorhandensein von tardiver Dyskinesie untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135: 1081–1084.PubMedGoogle Scholar
  2. Aniline O, Pitts FN (1982) Phencyclidine (PCP): a review and perspectives. CRC Crit Rev Toxicol 10: 145–177.CrossRefGoogle Scholar
  3. Blin J, Baron JC, Cambon H et al. (1989) Striatal dopamine D2 receptors in tardive dyskinesia: PET study. J Neurol Neurosurg Psychiatry 52: 1248–1252.PubMedCrossRefGoogle Scholar
  4. Cantrell BE, Leander JD, Mendelsohn LG, Schoepp DD, Hermann RB, Zimmerman DM (1988) The search for a PCP antagonist: the discovery of potent PCP-like activity in hexahydroindeno (2, 1-c) pyridine series of compounds. In: Domino EF, Kamenka J-M (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbour, pp 157–171.Google Scholar
  5. Carlsson M, Carlsson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75: 221–226.PubMedCrossRefGoogle Scholar
  6. Castellani S, Bupp SJ (1988) Molecular mechanism in phencyclidine-induced psychosis and its treatment. In: Domino EF, Kamenka J-M (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbour, pp 521–539.Google Scholar
  7. Crow TJ, Owen F, Cross AJ et al. (1981) Neurotransmitter enzymes and receptors in postmortem brain in schizophrenia: evidence that an increase in D2 dopamine receptors is associated with the type I syndrome. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 85–93.Google Scholar
  8. Deakin JFW, Slater P, Simpson MDC et al. (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52: 1781–1786.PubMedCrossRefGoogle Scholar
  9. Deakin JFW, Slater P, Simpson MDC, Royston CM (1990) Disturbed brain glutamate and GAB A mechanisms in schizophrenia. Schizophr Res 3: 33.CrossRefGoogle Scholar
  10. Deutsch SI, Mastropaolo J, Schwartz BL, Rosse RB, Morihisa JM (1989) A “glutamatergic hypothesis” of schizophrenia. Rationale for pharmacotherapy with glycine. Clin Neuropharmacol 12: 1–13.PubMedCrossRefGoogle Scholar
  11. Etienne P, Baudry M (1987) Calcium dependent aspects of synaptic plasticity, excitatory amino acid neurotransmission, brain aging and schizophrenia: a unifying hypothesis. Neurobiol Aging 8: 362–366.PubMedCrossRefGoogle Scholar
  12. Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 44: 671–672.PubMedCrossRefGoogle Scholar
  13. Gattaz WF, Gattaz D, Beckmann H (1982) Glutamate in schizophrenics and healthy controls. Arch Psychiat Nervenkr 231: 221–225.PubMedCrossRefGoogle Scholar
  14. Greenshaw AJ, Baker GB, Wishart TB (1989) Dopamine receptor changes during chronic drug administration. In: Goudie AJ, Emmett-Oglesby MW (eds) Psychoactive drugs: Tolerance and sensitation. Humana Press, Clifton NJ, pp 353–406.CrossRefGoogle Scholar
  15. Janowsky A, Berger SP (1989) Clozapine inhibits [3H]MK-801 binding to the glutamate receptor — ion channel complex. Schizophr Res 2: 189.CrossRefGoogle Scholar
  16. Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry 9: 12–35.PubMedGoogle Scholar
  17. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurones. Nature 325: 529–531.PubMedCrossRefGoogle Scholar
  18. Kemp JA, Foster AC, Wong EHF, Middlemiss DN (1988) A comment on the classification and nomenclature of phencyclidine and sigma receptor sites. Trends Neurosci 11: 388–389.PubMedCrossRefGoogle Scholar
  19. Kerwin R (1990) The neurochemical anatomy of the hippocampus in postmortem schizophrenic brain. Schizophr Res 3: 33–34.CrossRefGoogle Scholar
  20. Kerwin RW, Patel S, Meldrum BS, Czudek C, Reynolds GP (1988) Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet I: 583–584.CrossRefGoogle Scholar
  21. Kim JS, Kornhuber HH, Kornhuber J, Kornhuber ME (1986) Glutamic acid and the dopamine hypothesis of schizophrenia. In: Chagass C, Josiassen RC, Bridger WH, Weiss HJ, Stoff D, Simpson GS (eds) Biological psychiatry 1985. Elsevier, Amsterdam, pp 1109–1111.Google Scholar
  22. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382.PubMedCrossRefGoogle Scholar
  23. Kishimoto H, Fujita H, Takatsu O et al. (1990) The glutaminergic hypothesis of schizophrenia: a study using positron emission tomography. Schizophr Res 3: 27.CrossRefGoogle Scholar
  24. Kornhuber HH, Kornhuber J, Kim JS, Kornhuber ME (1984) Zur biochemischen Theorie der Schizophrenie. Nervenarzt 55: 602–606.PubMedGoogle Scholar
  25. Kornhuber J, Kornhuber ME, Hartmann GM, Kornhuber AW (1988) In vivo influences on cerebrospinal fluid amino acid levels. Neurochem Int 12: 25–31.PubMedCrossRefGoogle Scholar
  26. Kornhuber J, Mack-Burkhardt F, Kornhuber ME, Riederer P (1989a) [3H]MK-801 binding sites in post-mortem human frontal cortex. Eur J Pharmacol 162: 483–490.PubMedCrossRefGoogle Scholar
  27. Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989b) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77: 231–236.PubMedCrossRefGoogle Scholar
  28. Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989c) 3H-Spiperone binding sites in post-mortem brains from schizophrenic patients: relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. J Neural Transm 75: 1–10.PubMedCrossRefGoogle Scholar
  29. Kornhuber ME, Kornhuber J, Kornhuber AW, Hartmann GM (1986a) Positive correlation between contamination by blood and amino acid levels in cerebrospinal fluid of the rat. Neurosci Lett 69: 212–215.PubMedCrossRefGoogle Scholar
  30. Kornhuber ME, Kornhuber J, Zettlmeißl H, Kornhuber HH (1986b) Phencyclidin und das glutamaterge System. In: Keup W (ed) Biologische Psychiatrie, Forschungsergebnisse. Springer, Berlin Heidelberg New York Tokyo, pp 176–180.CrossRefGoogle Scholar
  31. Korpi ER, Kleinman JE, Goodman SI, Wyatt J (1987) Neurotransmitter amino acids in post-mortem brains of chronic schizophrenic patients. Psychiatry Res 22: 291–301.PubMedCrossRefGoogle Scholar
  32. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug — Sernyl. Arch Neurol Psychiatry 81: 363–369.Google Scholar
  33. Mackay AVP, Iversen LL, Rossor M et al. (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39: 991–997.PubMedCrossRefGoogle Scholar
  34. Martinot J-L, Peron-Magnam P, Huret J-D et al. (1990) Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br]Bromospiperone in untreated schizophrenic patients. Am J Psychiatry 147: 44–50.PubMedGoogle Scholar
  35. Mita T, Hanada S, Nishino N et al. (1986) Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry 21: 1407–1414.PubMedCrossRefGoogle Scholar
  36. Nishikawa T, Takashima M, Tora N (1983) Increased 3H-kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 40: 245–250.PubMedCrossRefGoogle Scholar
  37. Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26: 505–525.PubMedCrossRefGoogle Scholar
  38. Perry TL (1982) Normal cerebrospinal fluid and brain glutamate levels in schizophrenia do not support the hypothesis of glutamatergic neuronal dysfunction. Neurosci Lett 28: 81–85.PubMedCrossRefGoogle Scholar
  39. Pradhan SN (1984) Phencyclidine (PCP): some human studies. Neurosci Biobehav Rev 8: 493–501.PubMedCrossRefGoogle Scholar
  40. Reynolds GP (1989) Beyond the dopamine hypothesis. The neurochemical pathology of schizophrenia. Br J Psychiatry 155: 305–316.PubMedGoogle Scholar
  41. Royston MC, Simpson MDC, Slater P, Deakin JFW (1990) An autoradiographic study in schizophrenia: evidence for an altered laminar distribution of 3H-D-aspartate binding in orbito-frontal cortex. Schizophr Res 3: 31.CrossRefGoogle Scholar
  42. Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1: 133–152.PubMedCrossRefGoogle Scholar
  43. Snyder SH (1980) Phencyclidine. Nature 285: 355–356.PubMedCrossRefGoogle Scholar
  44. Sonders MS, Keana JFW, Weber E (1988) Phencyclidine and psychotomimetic sigma opiates: recent insight into their biochemical and physiological sites of action. Trends Neurosci 11: 37–40.PubMedCrossRefGoogle Scholar
  45. Toru M, Watanabe S, Shibuya H et al. (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78: 121–137.PubMedCrossRefGoogle Scholar
  46. Toth E, Lajtha A (1986) Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 11: 393–400.PubMedCrossRefGoogle Scholar
  47. Waziri R (1988) Glycine therapy of schizophrenia. Biol Psychiatry 23: 210–211.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. Kornhuber
  • H. Beckmann
  • P. Riederer

There are no affiliations available

Personalised recommendations