Intermolecular Interactions at Low Temperature. Matrix Isolation Spectroscopy Applied to Hydrogen-Bonded Complexes and Charge Transfer Complexes

Abstract

Isolation of molecules, capable of undergoing specific intermolecular interactions with partner molecules, in inert solid matrices at extremely low temperature constitutes a unique experimental test for theoretical models or predictions which are usually based on the assumption of essentially “free” complexes. The technique offers many advantages compared to conventional spectroscopy, especially for H-bonded complexes. Detailed examples of matrix studies in this field are discussed. These include the vibrational correlation diagram for B…HCl complexes, the study of small aggregates of HCl, identification of the interaction site(s) in the polyfunctional bases methyl acetate and uracil, and the IR induced dissociation of the HI complex of dimethylacetamide.

Keywords

Entropy Enthalpy Iodine Chlorine Pyridine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

General references on the matrix isolation technique

  1. (a).
    Hallam HE (ed) (1973) Vibrational spectroscopy of trapped species, Wiley, LondonGoogle Scholar
  2. (b).
    Cradock S, Hinchliffe AJ (1975) Matrix isolation, Combridge Univ Press, LondonGoogle Scholar
  3. (c).
    Barnes AJ, Orville-Thomas WJ, Müller A, Gaufrès R (eds) (1981) Matrix isolation spectroscopy, NATO ASI ser. C, vol 76, Reidel DordrechtGoogle Scholar
  4. (d).
    Maes G (1983) Chemie Magazine 9(8): 11Google Scholar
  5. (e).
    Clark RJH, Hester RE (eds) (1989) Spectroscopy of matrix isolation species, Advances in Spectroscopy, vol 17, Wiley, LondonGoogle Scholar
  6. (f).
    Andrews L, Moskovits M (eds) (1989) Chemistry and physics of matrix-isolated species, North- Holland, AmsterdamGoogle Scholar

References cited

  1. 1.
    Norman I, Porter G (1954) Nature 174:508CrossRefGoogle Scholar
  2. 1.
    Whittle E, Downs DA, Pimentel GC (1954) J Chem Phys 22: 1943Google Scholar
  3. 2.
    Meyer B (1971) In: Low-Temperature Spectroscopy, Elsevier, New York, p 26Google Scholar
  4. 3.
    Barnes AJ, Stuckey MA, Orville-Thomas WJ, Le Gall L, Lauransan J (1979) J Mol Struct 56:1CrossRefGoogle Scholar
  5. 4.
    Graindourze M, Smets J, Zeegers-Huyskens Th, Maes G (1990) J Mol Struct 222: 345CrossRefGoogle Scholar
  6. 5.
    Barnes AJ, Cowieson D, Suzuki S (1976) Proc 5th Int Conf Raman Spectrosc, HF Schulz Verlag, FreiburgGoogle Scholar
  7. 6.
    Barnes AJ (1983) J Mol Struct 100: 259; Barnes AJ Compilation of hydrogen halide complex vHX stretching wavenumbers, updated 26.8.87 (unpublished results)CrossRefGoogle Scholar
  8. 7.
    Perchard JP in General Refs (c) p 551–553Google Scholar
  9. 8.
    Ault BS, Steinback E, Pimentel GC (1975) J Chem Phys 79: 615CrossRefGoogle Scholar
  10. 9.
    Graindourze M (1988) PhD Thesis, University of Leuven, BelgiumGoogle Scholar
  11. 10.
    Kreitman MM, Barnett DL (1965) J Chem Phys 43: 364CrossRefGoogle Scholar
  12. 11.
    Maillard D, Schriver A, Perchard JP, Girardet C (1979) J Chem Phys 71: 505CrossRefGoogle Scholar
  13. 12.
    Maillard D, Schriver A, Foudère F, Obriot J, Girardet C (1984) J Chem Phys 75: 1091CrossRefGoogle Scholar
  14. 13.
    Kollman P, Johansson A, Rothenberg S (1974) Chem Phys Lett 24: 199CrossRefGoogle Scholar
  15. 14.
    Votova C, Ahlrichs R and Geiger A (1983) J Chem Phys 78: 6841CrossRefGoogle Scholar
  16. 15.
    Walsh B, Barnes AJ, Suzuki S, Orville-Thomas WJ (1978) J Mol Spectry 72: 44CrossRefGoogle Scholar
  17. 16.
    Ayers GP, Pullin ADE (1976) Spectrochim. Acta A 32: 1629CrossRefGoogle Scholar
  18. 16.
    Engdahl A, Nelander B (1987) J Chem Phys 86: 1819 and 4831CrossRefGoogle Scholar
  19. 17.
    Barnes AJ, Orville-Thomas WJ (1978) Proc 6th Int Conf Raman Spectroscopy, Heyden, London, p 257Google Scholar
  20. 18.
    Barnes AJ, Hallam HE (1970) Trans Faraday Soc 66: 1920CrossRefGoogle Scholar
  21. 18.
    Schriver L, Burneau A, Perchard JP (1982) J Chem Phys 77: 2926CrossRefGoogle Scholar
  22. 19.
    Vanderheyden L, Zeegers-Huyskens Th (1983) J Mol Liq 25: 1CrossRefGoogle Scholar
  23. 20.
    Latajka Z, Ratajczak H, Zeegers-Huyskens Th (1988) J Mol Struct Theochem 164: 201CrossRefGoogle Scholar
  24. 21.
    Maes G, Zeegers-Huyskens Th (1983) J Mol Struct 100: 305CrossRefGoogle Scholar
  25. 21.
    Vanderheyden L, Maes G, Zeegers-Huyskens Th (1984) J Mol Struct 114: 165CrossRefGoogle Scholar
  26. 22.
    Benoit FM, Harrison AG (1977) J Am Chem Soc 99: 3980; (1978) Org Mass Spectrom 13: 128CrossRefGoogle Scholar
  27. 23.
    Graindourze M, Maes G, Smets J, Grootaers T, Zeegers-Huyskens Th (1991) J Mol Struct 243: 37CrossRefGoogle Scholar
  28. 24.
    Baldeschwieler JD, Pimentel GC (1960) J Chem Phys 33: 1008CrossRefGoogle Scholar
  29. 24.
    Hall RT, Pimentel GC (1963) J Chem Phys 38: 1889CrossRefGoogle Scholar
  30. 25.
    Felder P, Gunthard HsH (1984) Chem Phys 85: 1Google Scholar
  31. 26.
    Räsänen M, Bondybey VE (1984) Chem Phys Lett 111: 515CrossRefGoogle Scholar
  32. 27.
    Lotta T, Murto J, Räsänen M, Aspiala A (1984) Chem Phys 86: 105CrossRefGoogle Scholar
  33. 28.
    Gunthard HH (1984) J Mol Struct 113: 141CrossRefGoogle Scholar
  34. 28.
    Beech T, Gunde R, Felder P, Gunthard HH (1985) Spectrochim Acta A 41: 319CrossRefGoogle Scholar
  35. 29.
    Müller RP, Hollenstein H, Huber JR (1983) J Mol Spectry 100: 95CrossRefGoogle Scholar
  36. 30.
    Lenaerts S, Daeyart F, Vanderveken BJ, Maes G (1989) Spectrosc Lett 22: 289CrossRefGoogle Scholar
  37. 31.
    Poliakoff M (1987) Spectrochim Acta A 43: 217CrossRefGoogle Scholar
  38. 32.
    Hauge RH, Gransden S, Wang J, Margrave JL (1978) Ber Bunsenges Phys Chem 82: 104; (1979) J Am Chem Soc 101: 6950Google Scholar
  39. 33.
    Schriver L, Schriver A, Perchard JP (1986) J Chem Phys 84: 5553CrossRefGoogle Scholar
  40. 34.
    Mielke Z, Barnes AJ (1986) J Chem Soc Faraday Trans 2 82: 447CrossRefGoogle Scholar
  41. 34.
    Barnes AJ (1988) Faraday Discuss Chem Soc 86: 86/4CrossRefGoogle Scholar
  42. 35.
    Barnes AJ in General Refs (c) p 531–549Google Scholar
  43. 36.
    Ozin GA in General Refs (c) p 373–415Google Scholar
  44. 37.
    Mulliken RS, Person WB (1969) Molecular Complexes, Wiley, New YorkGoogle Scholar
  45. 37.
    Yarwood J (ed) (1973) Spectroscopy and structure of molecular complexes, Plenum Press, London (1973)Google Scholar
  46. 38.
    Ribbegârd G (1974) Chem Phys Lett 25: 333CrossRefGoogle Scholar
  47. 39.
    Stammreich R, Sala O, Forneris R (1953) Anaes Acad Brasil Cienc 25: 375Google Scholar
  48. 40.
    Agarwal UP, Barnes AJ, Orville-Thomas WJ (1985) Can J Chem 63: 1705CrossRefGoogle Scholar
  49. 41.
    Nelander B (1980) J Mol Struct 69: 59CrossRefGoogle Scholar
  50. 42.
    Fredin L, Nelander B (1973) J Mol Struct 16: 217CrossRefGoogle Scholar
  51. 43.
    Fredin L, Nelander B (1974) Mol Phys 27: 885CrossRefGoogle Scholar
  52. 44.
    Frèdin L, Nelander B (1973) J Mol Struct 16: 205CrossRefGoogle Scholar
  53. 45.
    Sass CS, Ault BS (1984) J Phys Chem 88: 432; (1986) ibidem 90: 1547CrossRefGoogle Scholar
  54. 46.
    Lucchese RR, Haber K, Schaefer HF (1976) J Am Chem Soc 98: 7617CrossRefGoogle Scholar
  55. 46.
    Douglas JE, Kollman PE (1978) J Am Chem Soc 100: 5226CrossRefGoogle Scholar
  56. 47.
    Pimentel GC, Bulanin MO, Van Thiel M (1962) J Chem Phys 36: 500CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • G. Maes

There are no affiliations available

Personalised recommendations