Skip to main content

Intermolecular Interactions at Low Temperature. Matrix Isolation Spectroscopy Applied to Hydrogen-Bonded Complexes and Charge Transfer Complexes

  • Chapter
Intermolecular Forces

Abstract

Isolation of molecules, capable of undergoing specific intermolecular interactions with partner molecules, in inert solid matrices at extremely low temperature constitutes a unique experimental test for theoretical models or predictions which are usually based on the assumption of essentially “free” complexes. The technique offers many advantages compared to conventional spectroscopy, especially for H-bonded complexes. Detailed examples of matrix studies in this field are discussed. These include the vibrational correlation diagram for B…HCl complexes, the study of small aggregates of HCl, identification of the interaction site(s) in the polyfunctional bases methyl acetate and uracil, and the IR induced dissociation of the HI complex of dimethylacetamide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

General references on the matrix isolation technique

  1. Hallam HE (ed) (1973) Vibrational spectroscopy of trapped species, Wiley, London

    Google Scholar 

  2. Cradock S, Hinchliffe AJ (1975) Matrix isolation, Combridge Univ Press, London

    Google Scholar 

  3. Barnes AJ, Orville-Thomas WJ, Müller A, Gaufrès R (eds) (1981) Matrix isolation spectroscopy, NATO ASI ser. C, vol 76, Reidel Dordrecht

    Google Scholar 

  4. Maes G (1983) Chemie Magazine 9(8): 11

    CAS  Google Scholar 

  5. Clark RJH, Hester RE (eds) (1989) Spectroscopy of matrix isolation species, Advances in Spectroscopy, vol 17, Wiley, London

    Google Scholar 

  6. Andrews L, Moskovits M (eds) (1989) Chemistry and physics of matrix-isolated species, North- Holland, Amsterdam

    Google Scholar 

References cited

  1. Norman I, Porter G (1954) Nature 174:508

    Article  CAS  Google Scholar 

  2. Whittle E, Downs DA, Pimentel GC (1954) J Chem Phys 22: 1943

    CAS  Google Scholar 

  3. Meyer B (1971) In: Low-Temperature Spectroscopy, Elsevier, New York, p 26

    Google Scholar 

  4. Barnes AJ, Stuckey MA, Orville-Thomas WJ, Le Gall L, Lauransan J (1979) J Mol Struct 56:1

    Article  CAS  Google Scholar 

  5. Graindourze M, Smets J, Zeegers-Huyskens Th, Maes G (1990) J Mol Struct 222: 345

    Article  CAS  Google Scholar 

  6. Barnes AJ, Cowieson D, Suzuki S (1976) Proc 5th Int Conf Raman Spectrosc, HF Schulz Verlag, Freiburg

    Google Scholar 

  7. Barnes AJ (1983) J Mol Struct 100: 259; Barnes AJ Compilation of hydrogen halide complex vHX stretching wavenumbers, updated 26.8.87 (unpublished results)

    Article  CAS  Google Scholar 

  8. Perchard JP in General Refs (c) p 551–553

    Google Scholar 

  9. Ault BS, Steinback E, Pimentel GC (1975) J Chem Phys 79: 615

    Article  CAS  Google Scholar 

  10. Graindourze M (1988) PhD Thesis, University of Leuven, Belgium

    Google Scholar 

  11. Kreitman MM, Barnett DL (1965) J Chem Phys 43: 364

    Article  CAS  Google Scholar 

  12. Maillard D, Schriver A, Perchard JP, Girardet C (1979) J Chem Phys 71: 505

    Article  CAS  Google Scholar 

  13. Maillard D, Schriver A, Foudère F, Obriot J, Girardet C (1984) J Chem Phys 75: 1091

    Article  Google Scholar 

  14. Kollman P, Johansson A, Rothenberg S (1974) Chem Phys Lett 24: 199

    Article  CAS  Google Scholar 

  15. Votova C, Ahlrichs R and Geiger A (1983) J Chem Phys 78: 6841

    Article  Google Scholar 

  16. Walsh B, Barnes AJ, Suzuki S, Orville-Thomas WJ (1978) J Mol Spectry 72: 44

    Article  CAS  Google Scholar 

  17. Ayers GP, Pullin ADE (1976) Spectrochim. Acta A 32: 1629

    Article  Google Scholar 

  18. Engdahl A, Nelander B (1987) J Chem Phys 86: 1819 and 4831

    Article  CAS  Google Scholar 

  19. Barnes AJ, Orville-Thomas WJ (1978) Proc 6th Int Conf Raman Spectroscopy, Heyden, London, p 257

    Google Scholar 

  20. Barnes AJ, Hallam HE (1970) Trans Faraday Soc 66: 1920

    Article  CAS  Google Scholar 

  21. Schriver L, Burneau A, Perchard JP (1982) J Chem Phys 77: 2926

    Article  Google Scholar 

  22. Vanderheyden L, Zeegers-Huyskens Th (1983) J Mol Liq 25: 1

    Article  CAS  Google Scholar 

  23. Latajka Z, Ratajczak H, Zeegers-Huyskens Th (1988) J Mol Struct Theochem 164: 201

    Article  Google Scholar 

  24. Maes G, Zeegers-Huyskens Th (1983) J Mol Struct 100: 305

    Article  CAS  Google Scholar 

  25. Vanderheyden L, Maes G, Zeegers-Huyskens Th (1984) J Mol Struct 114: 165

    Article  CAS  Google Scholar 

  26. Benoit FM, Harrison AG (1977) J Am Chem Soc 99: 3980; (1978) Org Mass Spectrom 13: 128

    Article  CAS  Google Scholar 

  27. Graindourze M, Maes G, Smets J, Grootaers T, Zeegers-Huyskens Th (1991) J Mol Struct 243: 37

    Article  CAS  Google Scholar 

  28. Baldeschwieler JD, Pimentel GC (1960) J Chem Phys 33: 1008

    Article  CAS  Google Scholar 

  29. Hall RT, Pimentel GC (1963) J Chem Phys 38: 1889

    Article  CAS  Google Scholar 

  30. Felder P, Gunthard HsH (1984) Chem Phys 85: 1

    CAS  Google Scholar 

  31. Räsänen M, Bondybey VE (1984) Chem Phys Lett 111: 515

    Article  Google Scholar 

  32. Lotta T, Murto J, Räsänen M, Aspiala A (1984) Chem Phys 86: 105

    Article  CAS  Google Scholar 

  33. Gunthard HH (1984) J Mol Struct 113: 141

    Article  Google Scholar 

  34. Beech T, Gunde R, Felder P, Gunthard HH (1985) Spectrochim Acta A 41: 319

    Article  Google Scholar 

  35. Müller RP, Hollenstein H, Huber JR (1983) J Mol Spectry 100: 95

    Article  Google Scholar 

  36. Lenaerts S, Daeyart F, Vanderveken BJ, Maes G (1989) Spectrosc Lett 22: 289

    Article  CAS  Google Scholar 

  37. Poliakoff M (1987) Spectrochim Acta A 43: 217

    Article  Google Scholar 

  38. Hauge RH, Gransden S, Wang J, Margrave JL (1978) Ber Bunsenges Phys Chem 82: 104; (1979) J Am Chem Soc 101: 6950

    CAS  Google Scholar 

  39. Schriver L, Schriver A, Perchard JP (1986) J Chem Phys 84: 5553

    Article  CAS  Google Scholar 

  40. Mielke Z, Barnes AJ (1986) J Chem Soc Faraday Trans 2 82: 447

    Article  CAS  Google Scholar 

  41. Barnes AJ (1988) Faraday Discuss Chem Soc 86: 86/4

    Article  Google Scholar 

  42. Barnes AJ in General Refs (c) p 531–549

    Google Scholar 

  43. Ozin GA in General Refs (c) p 373–415

    Google Scholar 

  44. Mulliken RS, Person WB (1969) Molecular Complexes, Wiley, New York

    Google Scholar 

  45. Yarwood J (ed) (1973) Spectroscopy and structure of molecular complexes, Plenum Press, London (1973)

    Google Scholar 

  46. Ribbegârd G (1974) Chem Phys Lett 25: 333

    Article  Google Scholar 

  47. Stammreich R, Sala O, Forneris R (1953) Anaes Acad Brasil Cienc 25: 375

    CAS  Google Scholar 

  48. Agarwal UP, Barnes AJ, Orville-Thomas WJ (1985) Can J Chem 63: 1705

    Article  CAS  Google Scholar 

  49. Nelander B (1980) J Mol Struct 69: 59

    Article  CAS  Google Scholar 

  50. Fredin L, Nelander B (1973) J Mol Struct 16: 217

    Article  CAS  Google Scholar 

  51. Fredin L, Nelander B (1974) Mol Phys 27: 885

    Article  CAS  Google Scholar 

  52. Frèdin L, Nelander B (1973) J Mol Struct 16: 205

    Article  Google Scholar 

  53. Sass CS, Ault BS (1984) J Phys Chem 88: 432; (1986) ibidem 90: 1547

    Article  CAS  Google Scholar 

  54. Lucchese RR, Haber K, Schaefer HF (1976) J Am Chem Soc 98: 7617

    Article  CAS  Google Scholar 

  55. Douglas JE, Kollman PE (1978) J Am Chem Soc 100: 5226

    Article  CAS  Google Scholar 

  56. Pimentel GC, Bulanin MO, Van Thiel M (1962) J Chem Phys 36: 500

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Maes, G. (1991). Intermolecular Interactions at Low Temperature. Matrix Isolation Spectroscopy Applied to Hydrogen-Bonded Complexes and Charge Transfer Complexes. In: Huyskens, P.L., Luck, W.A.P., Zeegers-Huyskens, T. (eds) Intermolecular Forces. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76260-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76260-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76262-8

  • Online ISBN: 978-3-642-76260-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics